【總結(jié)】學(xué)習(xí)要求理解逆矩陣的概念,掌握逆矩陣的性質(zhì)及矩陣可逆的充要條件,了解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣;了解分塊矩陣的概念及其運(yùn)算,掌握分塊對(duì)角矩陣的性質(zhì);理解矩陣的秩的概念?!镆詫?duì)于數(shù)的運(yùn)算,如果對(duì)于數(shù),存在數(shù),使得,則稱數(shù)為數(shù)
2025-04-29 03:58
【總結(jié)】一、矩陣的初等變換定義對(duì)矩陣進(jìn)行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數(shù)k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點(diǎn)是可以畫一條階梯線,線的左下方元素全為零;行簡(jiǎn)化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-06-07 16:29
【總結(jié)】線性規(guī)劃的單純形算法和線性代數(shù)的分塊初等變換的教學(xué)結(jié)合福建師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院鄭開杰大綱?教學(xué)困惑?教學(xué)結(jié)合?其他一、教學(xué)困惑1.線性代數(shù)的應(yīng)用實(shí)例的教學(xué)困惑(1)教師角度:?教師的教學(xué)往往是“以不變應(yīng)萬變”,不同專業(yè)的學(xué)生講一樣的應(yīng)用實(shí)例?為講線性代數(shù)的應(yīng)用“造”實(shí)例
2024-09-01 08:10
【總結(jié)】矩陣的逆第一章(H)(H)矩陣的逆逆矩陣的概念和性質(zhì)定義對(duì)于階矩,如果有一個(gè)階矩陣則說矩陣是可逆的,并把矩陣稱為的逆矩陣.nAB,EBAAB??BAnA,使得.1?AA的逆矩陣記作例設(shè),21212121,1111
2025-03-22 05:57
【總結(jié)】定義:A=(aij)m×n,B=(bij)p×q,nmijnqmpmnmmnnBaBaBaBaBaBaBaBaBaBaBA???????????????????)(212222111211???????直積
2025-08-05 20:12
【總結(jié)】華北水利水電學(xué)院總結(jié)求矩陣的逆矩陣方法課程名稱:線性代數(shù)專業(yè)班級(jí):成員組成:
2024-10-23 12:37
【總結(jié)】§2初等矩陣一、初等矩陣的概念二、初等矩陣的應(yīng)用1、定義由單位矩陣E經(jīng)過一次初等變換得到的方陣稱為初等矩陣.三種初等變換對(duì)應(yīng)著三種初等方陣.矩陣的初等變換是矩陣的一種基本運(yùn)算,應(yīng)用廣泛.一、初等矩陣的概念??????行(列)上去.乘某行(列)加到另一以數(shù)乘某行或某
2025-07-25 01:31
【總結(jié)】1§逆矩陣2,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);
2024-10-19 00:34
【總結(jié)】§5初等矩陣一、初等矩陣的概念和簡(jiǎn)單性質(zhì)二、矩陣的等價(jià)一、初等矩陣的概念和簡(jiǎn)單性質(zhì)定義由單位矩陣經(jīng)過一次初等變換得到的矩陣稱為初等矩陣.E的第I行與第j行交換得到初等矩陣11011(,)11011ijiPijj????
2025-07-23 14:24
【總結(jié)】第五節(jié)矩陣的初等變換及初等矩陣定義1下面三種變換稱為矩陣的初等行變換:??);記作兩行對(duì)調(diào)兩行(對(duì)調(diào)jirrji?,,1??;02乘以某一行的所有元素以數(shù)?k)記作行乘(第krkii?,??.3)記作行上倍加到第行的對(duì)應(yīng)的元素上去(第倍加到另一行把某一行所有元素的jikrrikjk
2024-10-14 17:21
【總結(jié)】上海八中許穎龍春朝2022年12月10日思考問題:記甲、乙、丙三位同學(xué)的語(yǔ)文平時(shí)、期中、期末成績(jī)?yōu)榫仃嘇,平時(shí)、期中、期末成績(jī)的所占比例為矩陣B,這三位同學(xué)的語(yǔ)文總評(píng)成績(jī)用矩陣C表示。???????????908060807090757080A????
2024-08-25 02:02
【總結(jié)】1§5線性變換的對(duì)角矩陣主要內(nèi)容對(duì)角化概念對(duì)角化的條件目錄下頁(yè)返回結(jié)束對(duì)角化的計(jì)算方法2一、對(duì)角化概念對(duì)角矩陣是矩陣中最簡(jiǎn)單的一種.于是問題變?yōu)槟男┚€性變換在一組適當(dāng)?shù)幕驴梢允菍?duì)角矩陣.(),,,.,.nnLVPVV
2025-07-17 19:14
【總結(jié)】....特殊分塊矩陣的逆與秩朱利文,數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院摘··要:矩陣的逆和秩是矩陣的一個(gè)重要不變量,在矩陣中起著基本的作用。不論在理論上還是在實(shí)踐中,矩陣的逆和秩都是一種強(qiáng)有力的工具。深入掌握矩陣的逆和秩可以更好地將其應(yīng)用到實(shí)踐中。本文利用分塊矩陣的特性
2025-05-16 12:02
【總結(jié)】多小波變換的矩陣形式及其軟件實(shí)現(xiàn)上頁(yè)下頁(yè)退出多小波變換的矩陣形式及其軟件實(shí)現(xiàn)我們知道,進(jìn)行1次多小波變換的分解與重構(gòu)公式為:與單小波不同之處在于,公式中的s(n,k)是r維列向量,H(k),G(k)是rXr大小的矩陣。因此,在使用這個(gè)公式前,
2025-05-03 13:40
【總結(jié)】矩陣的合同變換摘要:矩陣的合同變換是高等代數(shù)矩陣?yán)碚撝校窘粨Q。在《高等代數(shù)》里,我們僅討論簡(jiǎn)單而直接的變換,而矩陣的合同變換與矩陣相似變換,二次型等有著諸多相同性質(zhì)和聯(lián)系。關(guān)鍵詞:矩陣秩合同對(duì)角化定義1:如果矩陣A可以經(jīng)過一系列初等變換變成B,則積A與B等價(jià),記為定義2:設(shè)A,B都是數(shù)域F上的n階方陣,如果存在數(shù)域F上的n階段可逆矩陣P使得,則稱A和B相似
2025-07-24 03:28