【總結(jié)】湖南工程學(xué)院微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告專業(yè)班級姓名學(xué)號組別信息與計(jì)算科學(xué)1001鄧鶴201010010215實(shí)驗(yàn)日期2013年5月9日第4次實(shí)驗(yàn)指導(dǎo)老師楊繼明評分實(shí)驗(yàn)名稱用差分格式求雙曲型方程的邊值問題實(shí)驗(yàn)?zāi)康氖煜ふ莆针p曲型方程邊值問題的差分格式并程序?qū)崿F(xiàn)實(shí)驗(yàn)原理與步驟:利用差分格式求下面波動方程混合邊
2025-07-21 03:07
【總結(jié)】偏微分方程組解法某厚度為10cm平壁原溫度為20,現(xiàn)其兩側(cè)面分別維持在20和120,試求經(jīng)過8秒后平壁內(nèi)溫度分布,并分析溫度分布隨時(shí)間的變化直至溫度分布穩(wěn)定為止。式中為導(dǎo)溫系數(shù),;。解:模型轉(zhuǎn)化為標(biāo)準(zhǔn)形式:初始條件為:邊界條件為:,函數(shù):%偏微分方程(一維動態(tài)傳熱)function[c,f,s]=pdefu
2025-06-19 21:46
【總結(jié)】1微分方程的例題分析及解法本單元的基本內(nèi)容是常微分方程的概念,一階常微分方程的解法,二階常微分方程的解法,微分方程的應(yīng)用。一、常微分方程的概念本單元介紹了微分方程、常微分方程、微分方程的階、解、通解、特解、初始條件等基本概念,要正確理解這些概念;要學(xué)會判別微分方程的類型,理解線性微分方程解的結(jié)構(gòu)定理。二、一階常微分方程的解法本
2025-01-09 07:10
【總結(jié)】微積分理論微分方程及其應(yīng)用微積分II微積分理論馮國臣2022/2/17例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得
2025-01-20 05:31
【總結(jié)】自動化專業(yè)綜合設(shè)計(jì)報(bào)告自動化專業(yè)綜合設(shè)計(jì)報(bào)告設(shè)計(jì)題目:利用matlab編寫S函數(shù)求解微分方程所在實(shí)驗(yàn)室:自動化系統(tǒng)仿真實(shí)驗(yàn)室指導(dǎo)教師:郭衛(wèi)平
2025-05-16 02:20
【總結(jié)】微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告姓名:班級:學(xué)號:一:問題描述求解邊值問題:其精確解為問題一:取步長h=k=1/64,1/128,作五點(diǎn)差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點(diǎn)后四位的迭代值作為解的近似值,比較三
2025-07-21 17:34
【總結(jié)】計(jì)算機(jī)控制技術(shù)課程講義1步驟:1、給定系統(tǒng)的輸入和必要初始條件。(輸出的響應(yīng)函數(shù)必然在某種輸入激勵(lì)條件下產(chǎn)生)2、對微分方程兩邊進(jìn)行拉氏變換,變微分運(yùn)算為代數(shù)運(yùn)算。3、在S域中解出系統(tǒng)輸出的拉氏變換表達(dá)式,應(yīng)用拉氏反變換求得其時(shí)域解。用拉氏變換求解線性微分方程計(jì)算機(jī)控制技術(shù)課程講義2例:前例3力學(xué)系統(tǒng),系統(tǒng)輸出:
2025-05-12 12:11
【總結(jié)】2022/4/131高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院第7章微分方程問題的計(jì)算機(jī)求解?薛定宇、陳陽泉著《高等應(yīng)用數(shù)學(xué)問題的MATLAB求解》,清華大學(xué)出版社2022?CAI課件開發(fā):劉瑩瑩、薛定宇2022/4/132高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院主要
2025-03-22 04:31
【總結(jié)】第三章微分方程模型一、微分方程知識簡介我們要掌握常微分方程的一些基礎(chǔ)知識,對一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【總結(jié)】常微分方程的高精度求解方法安徽大學(xué)江淮學(xué)院07計(jì)算機(jī)(1)班安徽大學(xué)江淮學(xué)院本科畢業(yè)論文(設(shè)計(jì))題目:常微分方程求解的高階方法學(xué)生姓名:圣近學(xué)號:JB074219院(系):計(jì)算機(jī)科學(xué)與技術(shù)專業(yè):計(jì)算
2025-06-03 12:01
【總結(jié)】有限差分法求解偏微分方程摘要:本文主要使用有限差分法求解計(jì)算力學(xué)中的系統(tǒng)數(shù)學(xué)模型,推導(dǎo)了有限差分法的理論基礎(chǔ),并在此基礎(chǔ)上給出了部分有限差分法求解偏微分方程的算例驗(yàn)證了推導(dǎo)的正確性及操作可行性。關(guān)鍵詞:計(jì)算力學(xué),偏微分方程,有限差分法Abstract:Thisdissertationmainlyfocusesonsolvingthemathematicmodelof
2025-06-19 04:08
【總結(jié)】2021/6/17常微分方程§微分方程的降階和冪級數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【總結(jié)】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-06-25 01:32
【總結(jié)】第四節(jié)一階線性微分方程一階線性微分方程標(biāo)準(zhǔn)形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱為非齊次方程.1.解齊次方程分離變量兩邊積分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱為齊次方程
2025-07-22 11:17
【總結(jié)】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過求解微分方程求出未知函數(shù),自變量只有一個(gè)的微分方程稱為常微分方程。:常微分方程是研究自然科學(xué)和社會科學(xué)中的事物、物體和現(xiàn)象運(yùn)動﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以
2025-06-18 13:01