freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)二輪專題復(fù)習(xí)教案―立體幾何-資料下載頁

2025-06-08 00:25本頁面
  

【正文】 證明:建立如圖所示的空間直角坐標(biāo)系.設(shè)正三棱柱的底面邊長為,側(cè)棱長為,則,.設(shè)平面的一個法向量為,則所以不妨令,則.由于,得.又平面,平面.點評:平面的法向量是空間向量的一個重要概念,它在解決立體幾何的許多問題中都有很好的應(yīng)用.四、方法總結(jié)與2009年高考預(yù)測(一)方法總結(jié)1.位置關(guān)系:(1)兩條異面直線相互垂直 證明方法:①證明兩條異面直線所成角為90186。;②證明線面垂直,得到線線垂直;③證明兩條異面直線的方向量相互垂直。(2)直線和平面相互平行證明方法:①證明直線和這個平面內(nèi)的一條直線相互平行;②證明這條直線的方向量和這個平面內(nèi)的一個向量相互平行;③證明這條直線的方向量和這個平面的法向量相互垂直。(3)直線和平面垂直證明方法:①證明直線和平面內(nèi)兩條相交直線都垂直,②證明直線的方向量與這個平面內(nèi)不共線的兩個向量都垂直;③證明直線的方向量與這個平面的法向量相互平行。(4)平面和平面相互垂直證明方法:①證明這兩個平面所成二面角的平面角為90186。;②證明一個平面內(nèi)的一條直線垂直于另外一個平面;③證明兩個平面的法向量相互垂直。2.求距離:求距離的重點在點到平面的距離,直線到平面的距離和兩個平面的距離可以轉(zhuǎn)化成點到平面的距離,一個點到平面的距離也可以轉(zhuǎn)化成另外一個點到這個平面的距離。(1)兩條異面直線的距離求法:利用公式法。(2)點到平面的距離求法:①“一找二證三求”,三步都必須要清楚地寫出來。②等體積法。③向量法。 3.求角(1)兩條異面直線所成的角求法:①先通過其中一條直線或者兩條直線的平移,找出這兩條異面直線所成的角,然后通過解三角形去求得;②通過兩條異面直線的方向量所成的角來求得,但是注意到異面直線所成角得范圍是,向量所成的角范圍是,如果求出的是鈍角,要注意轉(zhuǎn)化成相應(yīng)的銳角。(2)直線和平面所成的角求法:①“一找二證三求”,三步都必須要清楚地寫出來。②向量法,先求直線的方向量于平面的法向量所成的角α,那么所要求的角為或。(3)平面與平面所成的角求法:①“一找二證三求”,找出這個二面角的平面角,然后再來證明我們找出來的這個角是我們要求的二面角的平面角,最后就通過解三角形來求。②向量法,先求兩個平面的法向量所成的角為α,那么這兩個平面所成的二面角的平面角為α或π-α。(二)2009年高考預(yù)測從近幾年各地高考試題分析,立體幾何題型一般是一個解答題,1至3個填空或選擇題.解答題一般與棱柱和棱錐相關(guān),主要考查線線關(guān)系、線面關(guān)系和面面關(guān)系,其重點是考查空間想象能力和推理運算能力,其解題方法一般都有二種以上,并且一般都能用空間向量來求解.高考試題中,立體幾何側(cè)重考查學(xué)生的空間概念、邏輯思維能力、空間想象能力及運算能力.近幾年凡涉及空間向量應(yīng)用于立體幾何的高考試題,都著重考查應(yīng)用空間向量求異面直線所成的角、二面角,證明線線平行、線面平行和證明異面直線垂直和線面垂直等基本問題。高考對立體幾何的考查側(cè)重以下幾個方面: 1.從命題形式來看,涉及立體幾何內(nèi)容的命題形式最為多變.除保留傳統(tǒng)的“四選一”的選擇題型外,還嘗試開發(fā)了“多選填空”、“完型填空”、“構(gòu)造填空”等題型,并且這種命題形式正在不斷完善和翻新;解答題則設(shè)計成幾個小問題,此類考題往往以多面體為依托,第一小問考查線線、線面、面面的位置關(guān)系,后面幾問考查空間角、空間距離、面積、體積等度量關(guān)系,其解題思路也都是“作——證——求”,強調(diào)作圖、證明和計算相結(jié)合。2.從內(nèi)容上來看,主要是:①考查直線和平面的各種位置關(guān)系的判定和性質(zhì),這類試題一般難度不大,多為選擇題和填空題;②計算角的問題,試題中常見的是異面直線所成的角,直線與平面所成的角,平面與平面所成的二面角,這類試題有一定的難度和需要一定的解題技巧,通常要把它們轉(zhuǎn)化為相交直線所成的角;③求距離,試題中常見的是點與點之間的距離,點到直線的距離,點到平面的距離,直線與直線的距離,直線到平面的距離,要特別注意解決此類問題的轉(zhuǎn)化方法;④簡單的幾何體的側(cè)面積和表面積問題,解此類問題除特殊幾何體的現(xiàn)成的公式外,還可將側(cè)面展開,轉(zhuǎn)化為求平面圖形的面積問題;⑤體積問題,要注意解題技巧,如等積變換、割補思想的應(yīng)用。⑥三視圖,辨認(rèn)空間幾何體的三視圖,三視圖與表面積、體積內(nèi)容相結(jié)合。3.從能力上來看,著重考查空間想象能力,即空間形體的觀察分析和抽象的能力,要求是“四會”:①會畫圖——根據(jù)題設(shè)條件畫出適合題意的圖形或畫出自己想作的輔助線(面),作出的圖形要直觀、虛實分明;②會識圖——根據(jù)題目給出的圖形,想象出立體的形狀和有關(guān)線面的位置關(guān)系;③會析圖——對圖形進(jìn)行必要的分解、組合;④會用圖——對圖形或其某部分進(jìn)行平移、翻折、旋轉(zhuǎn)、展開或?qū)嵭懈钛a術(shù);考查邏輯思維能力、運算能力和探索能力。五、復(fù)習(xí)建議三視圖是新課標(biāo)新增的內(nèi)容,2002008年課改區(qū)的高考題都有體現(xiàn),因此,三視圖的內(nèi)容應(yīng)重點訓(xùn)練。2.證明空間線面平行與垂直,是必考題型,解題時要由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證明思路.3.空間圖形中的角與距離,先根據(jù)定義找出或作出所求的角與距離,然后通過解三角形等方法求值,注意“作、證、算”176。<θ≤90176。,其方法是平移法和補形法;直線與平面所成角的范圍是0176?!堞取?0176。,其解法是作垂線、找射影;二面角0176?!堞取?80176。4.與幾何體的側(cè)面積和體積有關(guān)的計算問題,根據(jù)基本概念和公式來計算,要重視方程的思想和割補法、等積轉(zhuǎn)換法的運用5.平面圖形的翻折與空間圖形的展開問題,要對照翻折(或展開)前后兩個圖形,分清哪些元素的位置(或數(shù)量)關(guān)系改變了,哪些沒有改變.第 19 頁 共 19 頁 雨竹林高考
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1