【總結(jié)】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2024-11-03 20:18
【總結(jié)】2022/8/181第四章數(shù)值積分與數(shù)值微分2022/8/182?,3,2,1?k第四章數(shù)值積分與數(shù)值微分牛頓-柯特斯公式§復(fù)合求積法§龍貝格求積公式§高斯求積法§引言§2022/8/183
2025-08-01 13:33
【總結(jié)】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2025-08-21 12:42
【總結(jié)】一、全微分二、全微分在近似計(jì)算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對(duì)x和對(duì)y的偏微分(partialdifferential)二元函數(shù)對(duì)
2025-08-11 16:43
【總結(jié)】機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束1/28四、小結(jié)思考題一、偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)二、全微分機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束2/28一、偏導(dǎo)數(shù)【定義】設(shè)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?
2025-05-06 03:15
【總結(jié)】2022/2/131作業(yè)6(3)(6)(9)(11)(14)(17).9(4)(8)(15)(21).10(8).11(2).12(2).P67習(xí)題2022/2/132二、高階導(dǎo)數(shù)第六講
2025-01-16 06:42
【總結(jié)】湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案微積分的基礎(chǔ)知識(shí)及其在Matlab中的實(shí)現(xiàn)明巍數(shù)學(xué)與統(tǒng)計(jì)學(xué)院湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案數(shù)學(xué)建模種常用的微積分知識(shí)在Matlab中的實(shí)現(xiàn)1.極限運(yùn)算2.求導(dǎo)運(yùn)算3.積分運(yùn)算4.函數(shù)的Taylor
2025-08-04 22:40
【總結(jié)】第8章積分的MATLAB求解編者Outline?不定積分?定積分?反常積分?積分的數(shù)值求解不定積分定義如果在區(qū)間上,可導(dǎo)函數(shù)的導(dǎo)函數(shù)為,即對(duì)任一,都有
2025-07-20 12:28
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】??繪圖說(shuō)到繪圖,只要計(jì)算函數(shù)在某一區(qū)間的值,并且畫(huà)出結(jié)果向量,這樣就得到了函數(shù)的圖形。在大多數(shù)情況下,這就足夠了。然而,有時(shí)一個(gè)函數(shù)在某一區(qū)間是平坦的并且無(wú)激勵(lì),而在其它區(qū)間卻失控。在這種情況下,運(yùn)用傳統(tǒng)的繪圖方法會(huì)導(dǎo)致圖形與函數(shù)真正的特性相去甚遠(yuǎn)。MATLAB提供了一個(gè)稱(chēng)為fplot的巧妙的繪圖函數(shù)。該函數(shù)細(xì)致地計(jì)算要繪圖的函數(shù),并且確保在輸出的圖形中表示出所有的
2025-08-04 16:28
【總結(jié)】數(shù)值分析A第4章數(shù)值逼近與數(shù)值積分清華大學(xué)數(shù)學(xué)科學(xué)系基本內(nèi)容梯形公式和高斯公式。;四種插值方法:牛頓插值,拉格朗日插值,分段線性插值,三次樣條插值。?????0x1xnx0y1y求解插值問(wèn)題的基本思路構(gòu)造一個(gè)(相對(duì)簡(jiǎn)單的)函數(shù)),(
2025-07-20 04:50
【總結(jié)】第四節(jié)一階線性微分方程一階線性微分方程標(biāo)準(zhǔn)形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱(chēng)為非齊次方程.1.解齊次方程分離變量?jī)蛇叿e分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱(chēng)為齊次方程
2025-07-22 11:17
【總結(jié)】CHINAUNIVERSITYOFMININGANDTECHNOLOGY§2牛頓-柯特斯公式§3龍貝格求積法CH6數(shù)值積分與數(shù)值微分§1數(shù)值積分有關(guān)的基本概念§4高斯求積公式§5數(shù)值微分CHINAUNIVERSITYOFMINING
2024-12-08 00:43
【總結(jié)】這一部分里,我們將看到以下內(nèi)容?幾個(gè)典型物理問(wèn)題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類(lèi)型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個(gè)典型的問(wèn)題?弦振動(dòng)問(wèn)題的微分方程及定解條件?傳熱問(wèn)題的微分方程及定解條件?位勢(shì)方程及定解條件弦是一種抽象模型,工程實(shí)際中,可以模擬繩鎖、
2025-05-15 04:17
【總結(jié)】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第二章數(shù)值微分和數(shù)值積分?jǐn)?shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS數(shù)值
2024-09-28 14:09