【總結(jié)】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過(guò)程(一)、
2025-10-31 08:06
【總結(jié)】第一篇:《立體幾何VS空間向量》教學(xué)反思 我這節(jié)公開(kāi)課的題目是《立體幾何VS空間向量》選題背景是必修2學(xué)過(guò)立體幾何而選修21又學(xué)到空間向量在立體幾何中的應(yīng)用。學(xué)生有先入為主的觀念,總想用舊方法卻解體...
2025-11-07 02:21
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱(chēng)這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關(guān)系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計(jì)算問(wèn)題.了解向量方法在研究立體幾何問(wèn)題中的應(yīng)用.,而平面法向量則多滲透在解答題中考查.、面位置關(guān)系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-06-25 00:21
【總結(jié)】空間向量在立體幾何中的應(yīng)用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設(shè)PA=1,以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系如圖.則P(0,0,1),C(0,1,0),B
2025-08-18 16:48
【總結(jié)】1用空間向量處理立體幾何的問(wèn)題立體幾何著重的是研究點(diǎn)、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來(lái),純粹用立體幾何的公理、定理來(lái)證明或計(jì)算立體幾何問(wèn)題越來(lái)越少,而借助于向量的計(jì)算方法來(lái)處理立體幾何的問(wèn)題卻越來(lái)越多。本講座就是詳細(xì)
2025-08-27 17:12
【總結(jié)】利用空間向量解決立體幾何問(wèn)題數(shù)學(xué)專(zhuān)題二學(xué)習(xí)提綱二、立體幾何問(wèn)題的類(lèi)型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2025-11-16 22:52
【總結(jié)】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點(diǎn)
2025-06-23 04:04
【總結(jié)】第三章空間向量與立體幾何單元測(cè)試(時(shí)間:90分鐘 滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,每小題5分,共50分.1.以下四組向量中,互相平行的組數(shù)為( )①a=(2,2,1),b=(3,-2,-2);②a=(8,4,-6),b=(4,2,-3);③a=(0,-1,1),b=(0,3,-3);④a=(-3,2,0),b=(4,-3,3)
2025-06-23 18:25
【總結(jié)】空間向量與立體幾何單元測(cè)試題一、選擇題1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A.B.C.D.2、給出下列命題①已知,則;②A、B、M、N為空間四點(diǎn),若不構(gòu)成空間的一個(gè)基底,則A、B、M、N共面;③已知,則與任何向量不構(gòu)成空間的一個(gè)基底;④已知是空
2025-03-25 06:42
【總結(jié)】空間向量與立體幾何單元檢測(cè)題一、選擇題:1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】高中數(shù)學(xué)選修(2-1)空間向量與立體幾何測(cè)試題一、選擇題1.若把空間平行于同一平面且長(zhǎng)度相等的所有非零向量的始點(diǎn)放置在同一點(diǎn),則這些向量的終點(diǎn)構(gòu)成的圖形是( )A.一個(gè)圓 B.一個(gè)點(diǎn) C.半圓 D.平行四邊形答案:A2.在長(zhǎng)方體中,下列關(guān)于的表達(dá)中錯(cuò)誤的一個(gè)是( ?。粒? B.C. D.答案:B3.若為任意向量,,下列等式不一
2025-06-23 03:41
【總結(jié)】分類(lèi)突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2025-08-05 10:54
【總結(jié)】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問(wèn)題,其方法是通過(guò)向量的運(yùn)算來(lái)判斷,這是數(shù)形結(jié)合的典型問(wèn)題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2025-07-20 06:40
【總結(jié)】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價(jià)值?!魪墓偶墨I(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用?!粼O(shè)計(jì)展板:我國(guó)一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美?;居^點(diǎn)1、
2025-05-11 22:03