【總結(jié)】立體幾何空間直線解答題空間直線解答題1、在空間四邊形ABCD中,各邊長和對角線長均為a,點E、F分別是BD、AC的中點,求異面直線AE和BF所成的角.2、如圖,空間四邊形ABCD中,AB=AD=2,BC=DC=1,AD和
2025-11-02 13:18
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【總結(jié)】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【總結(jié)】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測量用的平板儀等等……C·
2025-04-17 00:53
【總結(jié)】高考數(shù)學(xué)專題復(fù)習(xí):立體幾何專題(理)一、山東省高考試題分析高考試卷中,立體幾何把考查的立足點放在空間圖形上,突出對空間概念和空間想象能力的考查。立體幾何的基礎(chǔ)是對點、線、面的位置關(guān)系的討論和研究,進(jìn)而討論幾何體。高考命題時,突出空間圖形的特點,側(cè)重于直線與直線、直線與平面、兩個平面的位置的關(guān)系以及空間角、面積、體積的計算的考查,以便檢測考生立體幾何的知識水平和能力。高考試題中題型
2025-06-07 18:09
【總結(jié)】《立體幾何》專題練習(xí)題1.如圖正方體中,E、F分別為D1C1和B1C1的中點,P、Q分別為A1C1與EF、AC與BD的交點,(1)求證:D、B、F、E四點共面;(2)若A1C與面DBFE交于點R,求證:P、Q、R三點共線2.已知直線、異面,平面過且平行于,平面過且平行于,求證:∥.FECByZ
2025-04-17 13:06
【總結(jié)】立體幾何綜合習(xí)題一、考點分析基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-04-17 12:18
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2025-09-25 17:17
【總結(jié)】利用空間向量解立體幾何問題2、例2已知三角形的頂點是,,,試求這個三角形的面積。分析:可用公式來求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個向量的夾角的定義和取值范圍、兩個向量垂直的定義和符號、兩個空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類:(i)利
2025-06-07 16:39
【總結(jié)】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2025-07-18 00:17
【總結(jié)】輔導(dǎo)科目:數(shù)學(xué)授課教師:全國章年級:高二上課時間:教材版本:人教版總課時:已上課時:課時學(xué)生簽名:課題名稱教學(xué)目標(biāo)重點、難點、考點教學(xué)步驟及內(nèi)容空間向量與立體幾何一、空間直角坐標(biāo)系的建立及點的坐標(biāo)表示空間直
2025-04-17 07:58
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線l1,l2的方向向量分別為μ,v,則下列直線l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2025-08-13 17:46
【總結(jié)】利用空間向量解決立體幾何問題一:利用空間向量求空間角(1)兩條異面直線所成的夾角范圍:兩條異面直線所成的夾角的取值范圍是。向量求法:設(shè)直線的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-07 16:29
【總結(jié)】空間立體幾何考試范圍:xxx;考試時間:100分鐘;命題人:xxx注意事項:1.答題前填寫好自己的姓名、班級、考號等信息2.請將答案正確填寫在答題卡上第I卷(選擇題)請點擊修改第I卷的文字說明評卷人得分一、選擇題(題型注釋)1.如圖,已知球O是棱長為1的正方體ABCB-A1B1C1D1的內(nèi)切球,則平面ACD1截球O的截面面積為()
2025-03-25 06:42
【總結(jié)】立體幾何垂直關(guān)系專題高考中立體幾何解答題中垂直關(guān)系的基本題型是:證明空間線面垂直需注意以下幾點:①由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。②立體幾何論證題的解答中,利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(或面或輔助體)是解題的常用方法之一。③明確何時應(yīng)用判定定理,何時應(yīng)用性質(zhì)定理,用定理時要先申明條件再由定理得出相應(yīng)結(jié)論。④三垂線定理及其逆定理在高考題中
2025-03-25 06:43