【總結(jié)】第2章圓錐曲線與方程(時間120分鐘,滿分160分)一、填空題(本大題共14小題,每小題5分,共70分,請把答案填在題中橫線上)1.(20212大連高二檢測)雙曲線x29-y24=1的漸近線方程是________.【解析】由題意知雙曲線焦點在x軸上a=3,b=2,∴漸近線方
2024-12-05 06:25
【總結(jié)】第2章——橢圓的幾何性質(zhì)(二)[學(xué)習(xí)目標(biāo)]..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接]已知直線和橢圓的方程,怎樣判斷直線不橢圓的位置關(guān)系?答:直線不橢圓的位置關(guān)系
2024-11-17 23:13
【總結(jié)】高中數(shù)學(xué)知識點大全—圓錐曲線一、考點(限考)概要:?1、橢圓:?(1)軌跡定義:??①定義一:在平面內(nèi)到兩定點的距離之和等于定長的點的軌跡是橢圓,兩定點是焦點,兩定點間距離是焦距,且定長2a大于焦距2c。用集合表示為:;??②定義二:在平面內(nèi)到定點的距離和它到一條定直線的距離之比是個常數(shù)e,那么這個點的軌跡叫做
2025-07-23 13:06
【總結(jié)】高考數(shù)學(xué)圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線.點與曲線的關(guān)系:若曲線的方程是,則點在曲線上;點不在曲線上.兩條曲線的交
2025-04-04 05:08
【總結(jié)】重慶市萬州分水中學(xué)高中數(shù)學(xué)選修2-1《第2章復(fù)習(xí)與小結(jié)(1)》教案(蘇教版)課題第2章復(fù)習(xí)與小結(jié)(1)第1課時計劃上課日期:教學(xué)目標(biāo)知識與技能1.掌握橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程;
2024-11-19 23:12
【總結(jié)】橢圓圖圖象和定義課堂練習(xí)雙曲線的圖象和定義拋物線的圖象和定義橢圓的定義平面內(nèi)到兩定點F1,F(xiàn)2的距離之和為常數(shù)(大于F1F2距離)的點的軌跡叫橢圓,兩個定點叫橢圓的焦點,兩焦點的距離叫做橢圓的焦距雙曲線的定義平面內(nèi)到兩定點F1F2
2024-11-18 08:46
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》圓錐曲線(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):,發(fā)現(xiàn)圓錐曲線的形成過程,進(jìn)而歸納出它們的定義,培養(yǎng)觀察、辨析、歸納問題的能力..,感受數(shù)形結(jié)合的基本思想和理解代數(shù)方法研究幾何性質(zhì)的優(yōu)越性.重點難點:
2024-11-19 17:31
【總結(jié)】......高考數(shù)學(xué)圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這
2025-04-04 05:07
【總結(jié)】高中數(shù)學(xué)第三課時圓錐曲線的參數(shù)方程一、教學(xué)目標(biāo):知識與技能:了解圓錐曲線的參數(shù)方程及參數(shù)的意義過程與方法:能選取適當(dāng)?shù)膮?shù),求簡單曲線的參數(shù)方程情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。二、重難點:教學(xué)重點:圓錐曲線參數(shù)方程的定義及方法教學(xué)難點:選擇適當(dāng)?shù)膮?shù)寫出曲線的參數(shù)方程.三、教學(xué)方法:啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).四、教
2025-06-07 23:59
【總結(jié)】圓錐曲線方程知識要點一、橢圓方程及其性質(zhì).1.橢圓的第一定義:橢圓的第二定義:,點P到定點F的距離,d為點P到直線l的距離其中F為橢圓焦點,l為橢圓準(zhǔn)線①橢圓的標(biāo)準(zhǔn)方程:的參數(shù)方程為()(現(xiàn)在了解,后面選修4-4要詳細(xì)講).②通徑:垂直于對稱軸且過焦點的弦叫做通徑,橢圓通徑長為③設(shè)橢圓:上弦AB的中點為M(x0,y0),則斜率kAB=,對橢圓:,則kAB=.弦
【總結(jié)】數(shù)學(xué)選修2-1第一章:命題與邏輯結(jié)構(gòu)知識點:1、命題:用語言、符號或式子表達(dá)的,可以判斷真假的陳述句.真命題::判斷為假的語句.2、“若,則”形式的命題中的稱為命題的條件,稱為命題的結(jié)論.3、對于兩個命題,如果一個命題的條件和結(jié)論分別是另一個命題的結(jié)論和條件,,另一個稱為原命題的逆命題。若原命題為“若,則”,它的逆命題為“若,則”.4、對于兩個命題,如果一個命題的
2025-04-04 05:16
【總結(jié)】高二年級第一學(xué)期階段數(shù)學(xué)試卷(選修2-1部分)一、選擇題1.拋物線y2=ax(a≠0)的焦點到其準(zhǔn)線的距離是( )A. B.C.|a|D.-2.設(shè)P是雙曲線上一點,雙曲線的一條漸近線方程為、F2分別是雙曲線的左、右焦點,若,
2025-06-23 08:17
【總結(jié)】曲線與方程課題第1課時計劃上課日期:教學(xué)目標(biāo)知識與技能(1)了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系;(2)初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;[(3)學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;(4)強化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思
2024-11-20 00:30
【總結(jié)】第二章圓錐曲線與方程第1課時圓錐曲線教學(xué)目標(biāo):,經(jīng)歷從具體情境中抽象出橢圓模型的過程,掌握它的定義;,感受、了解雙曲線、拋物線的定義.教學(xué)重點:用平面截圓錐面,了解與掌握橢圓、雙曲線、拋物線的定義教學(xué)難點:用平面截圓錐面教學(xué)過程:Ⅰ.問題情境一個平面截一個圓錐面,當(dāng)平面經(jīng)過
2024-11-19 20:38
【總結(jié)】第三章空間向量與立體幾何1、坐標(biāo)運算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離