【總結(jié)】專題講座高中數(shù)學“圓錐曲線”教學研究金寶錚北京師范大學二附中一、對“圓錐曲線”數(shù)學知識的深層次理解(一)“圓錐曲線”知識結(jié)構(gòu)圓錐曲線的內(nèi)容在新課標中安排在選修課程的選修系列1和選修系列2之中.知識結(jié)構(gòu)圖:圓錐曲線研究的圖形對于學生來講是比較陌生的圖形.雖然在初中階段學習函數(shù)的時候,同學們聽說過拋物線、雙曲線的名詞,當時的認識只是停留在直觀的感受.從二次函數(shù)
2025-04-04 05:07
【總結(jié)】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【總結(jié)】數(shù)學壓軸題圓錐曲線類一1.如圖,已知雙曲線C:的右準線與一條漸近線交于點M,F(xiàn)是雙曲線C的右焦點,O為坐標原點.(I)求證:;(II)若且雙曲線C的離心率,求雙曲線C的方程;(III)在(II)的條件下,直線過點A(0,1)與雙曲線C右支交于不同的兩點P、Q且P在A、Q之間,滿足,試判斷的范圍,并用代數(shù)方法給出證明.2.已知函數(shù),數(shù)列滿足
2025-08-05 18:42
【總結(jié)】高中數(shù)學解析幾何圓錐曲線,點、分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.,在直角坐標系中,設橢圓的左右兩個焦點分別為.過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.(1)求橢圓的方
2025-07-24 02:05
【總結(jié)】APQFOxy90題突破高中數(shù)學圓錐曲線,已知直線L:)0(1:12222??????babyaxCmyx過橢圓的右焦點F,且交橢圓C于A、B兩點,點A、B在直線2:Gxa?上的射影依次為點D、E。(1)若拋物線yx342?的焦點為橢圓C的上頂點,求橢圓C的方程;
2025-01-09 07:43
【總結(jié)】鳳凰出版?zhèn)髅郊瘓F版權(quán)所有網(wǎng)站地址:南京市湖南路1號B座808室聯(lián)系電話:025-83657815Mail:第13講圓錐曲線(含軌跡問題)本節(jié)知識在江蘇高考試題中要求比較低,橢圓的標準方程和幾何性質(zhì)是B級考點,其余都是A級考點,但高
2025-08-13 20:11
【總結(jié)】......高考圓錐曲線知識點匯總知識摘要:1、數(shù)學探索?.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.2、數(shù)學探索?.雙曲線的簡單幾何性質(zhì).3、數(shù)學探索?.拋物線的簡單幾何性質(zhì).一
2025-04-17 13:05
【總結(jié)】《圓錐曲線》第1課時——橢圓與雙曲線的幾何性質(zhì)班別姓名學號一、橢圓與雙曲線的標準方程與性質(zhì)橢圓雙曲線定義1到兩定點F1、F2的距離的和等于常數(shù)2a(2a|F1F2|)的動點M的軌跡叫橢圓。即|MF1|+|MF2|=2a定點F1、F2叫焦點,|F1F2|叫焦
2025-06-19 01:55
【總結(jié)】WORD資料可編輯有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對
2025-04-04 05:13
【總結(jié)】高中數(shù)學橢圓的知識總結(jié):平面內(nèi)一個動點P到兩個定點的距離之和等于常數(shù)(),,兩焦點的距離叫做橢圓的焦距.注意:若,則動點P的軌跡為線段;若,則動點P的軌跡無圖形.(1)橢圓:焦點在軸上時()(參數(shù)方程,其中為參數(shù)),焦點在軸上時=1()。2.橢圓的幾何性質(zhì):(1)橢圓(以()為例):①范圍:;②焦點:兩個焦點;③對稱性:兩條對稱軸,一個對稱中心(0,0),四個頂
2025-06-20 12:53
【總結(jié)】......圓錐曲線的性質(zhì)一、基礎知識(一)橢圓:1、定義和標準方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標準方程:①焦點在軸上的橢
2025-06-22 16:01
【總結(jié)】......§知識要點一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標準方程:i.中心在原點,焦點在x軸上:.ii.中心在原點,焦點在軸上:.②一般方程:.③橢
2025-06-22 23:13
【總結(jié)】橢圓【學習目標】1.掌握橢圓的標準方程,會求橢圓的標準方程;2.掌握橢圓的簡單幾何性質(zhì),能運用橢圓的標準方程和幾何性質(zhì)處理一些簡單的實際問題;3.了解運用曲線的方程研究曲線的幾何性質(zhì)的思想方法。B級要求【自學評價】橢圓定義:2.橢圓的標準方程:①焦點在x軸上的方程:,②焦點在y軸上的方程:3.橢圓的簡單幾何性質(zhì):方程
2025-06-07 23:27
【總結(jié)】高中數(shù)學圓錐曲線測試題一、選擇題1.雙曲線的實軸長是()(A)2(B)(C)4(D)4【解析】可變形為,則,,.故選C.()(A)(B
2025-01-14 09:45
【總結(jié)】......解圓錐曲線問題的常用方法大全1、定義法(1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1r2=ed2。(2)雙曲線有兩種定義。第一定義中,,當r1r
2025-04-04 05:08