【總結(jié)】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.類型二:勾股定理的構(gòu)造應(yīng)用2、如圖,已知:在中,,,.求:BC的長.舉一反三【變式1】如
2025-06-23 07:40
【總結(jié)】知識點及例題知識點一:勾股定理 如果直角三角形的兩直角邊長分別為:a,b,斜邊長為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方. 要點詮釋:(1)勾股定理揭示的是直角三角形平方關(guān)系的定理。 ?。?)勾股定理只適用于直角三角形,而不適用于銳角三角形和鈍角三角?! 。?)理解勾股
2025-06-22 04:06
【總結(jié)】《勾股定理》典型例題折疊問題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點B與點A重合,折痕為DE,則CD等于()A.B.C.D.
2025-03-24 13:01
【總結(jié)】.....《勾股定理》一、教學(xué)目標(biāo)1、知識與技能:理解勾股定理,并能運用勾股定理解決簡單的問題。2、過程與方法:經(jīng)歷勾股定理的探索過程,發(fā)展合情推理能力,體會數(shù)形結(jié)合思想、轉(zhuǎn)化思想和從特殊到一般的數(shù)學(xué)思想。3、情感態(tài)度價值觀:通
2025-06-24 20:34
【總結(jié)】4勾股定理及其逆定理復(fù)習(xí)典型例題1.勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三邊長:a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。2.勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反
2025-04-16 23:53
【總結(jié)】△ABC的周長為,其中斜邊,求這個三角形的面積。10.如果把勾股定理的邊的平方理解為正方形的面積,那么從面積的角度來說,勾股定理可以推廣.(1)如圖,以Rt△ABC的三邊長為邊作三個等邊三角形,則這三個等邊三角形的面積、、之間有何關(guān)系?并說明理由。(2)如圖,以Rt△ABC的三邊長為直徑作三個半圓,則這三個半圓的面積、、之間有何關(guān)系?(3)如果將上圖中的斜邊上的半圓沿斜邊翻折1
2025-03-24 12:59
【總結(jié)】勾股定理復(fù)習(xí)一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫畢達(dá)哥拉斯定理,也叫百牛定理。它是直角三角形的一條重要性質(zhì),揭示的是三邊之間的數(shù)量關(guān)系。它的主要作用是已知直角三角形的兩邊求第三邊
2025-06-22 04:05
【總結(jié)】折疊問題與勾股定理例題總結(jié)1.如圖,在矩形ABCD中,AB=6,BC=8。將矩形ABCD沿CE折疊后,使點D恰好落在對角線AC上的點F處。(1)求EF的長;(2)求梯形ABCE的面積。2.如圖所示,在?ABC中,AB=20,AC=12,BC=16,把?ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.3
2025-03-25 02:27
【總結(jié)】勾股定理典型例題及專項訓(xùn)練新宇中學(xué)八年級數(shù)學(xué)?1.如圖,公園內(nèi)有一塊長方形花圃,有極少數(shù)人為了避開拐角走“捷徑”,在花圃內(nèi)走出了一條“路”.他們僅僅少走了步路(假設(shè)3步為1米),卻踩傷了花草.超越自我
2025-05-06 12:12
【總結(jié)】......勾股定理知識點匯總1、基礎(chǔ)知識點:1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么 勾股定理的證明方法很多,常見的是拼圖的方法
【總結(jié)】第17章勾股定理點擊一:勾股定理勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.即直角三角形兩直角的平方和等于斜邊的平方.因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:(1)注意勾股定理的使用條件:只對直角三角形適用,而不適用于銳角三角形和鈍角三角形;(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
2025-03-24 13:00
【總結(jié)】湯原一中八年級數(shù)學(xué)導(dǎo)學(xué)案課題:勾股定理(一)備課時間主備教師參與教師審核人學(xué)習(xí)目標(biāo):1.了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理。2.培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力。學(xué)習(xí)重點:勾股定理的內(nèi)容及證明。學(xué)習(xí)難點:勾股定理的證明。學(xué)習(xí)過程:(一)、課前預(yù)習(xí)1、直角△ABC的主要性質(zhì)是:∠
2025-04-16 23:55
【總結(jié)】課題勾股定理綜合復(fù)習(xí)講義學(xué)習(xí)目標(biāo)1、勾股定理的證明、三角形形狀的判斷2、勾股定理的幾何應(yīng)用3、最短距離及航海問題重點難點勾股定理的逆定理及其應(yīng)用考點一:勾股定理(1)對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。(2)與直角三角形有關(guān)的結(jié)論:①
【總結(jié)】勾股定理應(yīng)用題,八年級(1)班的同學(xué)做了許多拉花裝飾教室,小玲抬來一架米長的梯子,準(zhǔn)備將梯子架到米高的墻上,則梯腳與墻角的距離是()米米米米1所示,有一塊三角形土地,其中∠C=90°,AB=39米,BC=36米,則其面積是(
【總結(jié)】勾股定理1.勾股定理是把形的特征(三角形中有一個角是直角),轉(zhuǎn)化為數(shù)量關(guān)系(a2+b2=c2),不僅可以解決一些計算問題,而且通過數(shù)的計算或式的變形來證明一些幾何問題,特別是證明線段間的一些復(fù)雜的等量關(guān)系.在幾何問題中為了使用勾股定理,常作高(或垂線段)等輔助線構(gòu)造直角三角形.2.勾股定理的逆定理是把數(shù)的特征(a2+b2=c2)轉(zhuǎn)化為形的特征(三角形中的一個角是直角),可以有機地與式
2025-06-22 07:28