【總結(jié)】......勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求
2025-06-23 07:40
【總結(jié)】勾股定理的逆定理》教學設(shè)計邢臺縣晏家屯中學徐立萍學習目標1.理解勾股定理的逆定理的證明方法和證明過程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角教學重難點勾股定理的逆定理及其應(yīng)用.勾股定理的逆定理的證
2025-01-07 14:03
【總結(jié)】勾股定理??剂曨}勾股定理的直接應(yīng)用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:212、在平面直角坐標系中,已知點P的坐標是(3,4),則OP的長為()A:3B:4
2025-03-24 13:00
【總結(jié)】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-23 07:39
【總結(jié)】與直角有關(guān)的折疊問題(一),將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-03-24 12:58
【總結(jié)】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
【總結(jié)】11頁共11頁勾股定理經(jīng)典例題詳解熟悉下列勾股數(shù),對解題是會有幫助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.類型二:勾股定理的構(gòu)造應(yīng)用1、如圖,已知:在中,,,.求:BC的長. ,已知:,,于P.求證:.:如圖,∠B=∠D=90°,∠A=60
【總結(jié)】勾股定理知識要點勾股定理:直角三角形中的兩直角邊的平方和等于斜邊的平方。關(guān)鍵詞:直角三角形勾股定理的逆定理:若一個三角形的某兩條邊的平方和等于剩余的一條邊的平方,則這個三角形一定是直角三角形。關(guān)鍵詞:判定直角三角形直角三角形的性質(zhì):在直角三角形中,為斜邊,為直角邊,為直角邊,是斜邊上的高。、、分別是邊、、的邊長。勾股定理:。;其他性質(zhì):,,
2025-06-16 04:24
【總結(jié)】課題勾股定理及證明教案設(shè)計萬山鎮(zhèn)長鋼初級中學張國保教學內(nèi)容勾股定理及簡單應(yīng)用教學目標〖知識與技能〗掌握勾股定理和他的簡單應(yīng)用,理解定理的一般探究方法?!歼^程與方法〗在方格紙上通過計
2025-01-07 19:53
【總結(jié)】探索勾股定理1請同學們畫四個與右圖全等的直角三角形,并把它剪下來。abc用這四個三角形拼一拼、擺一擺,看看是否得到一個含有以斜邊c為邊長的正方形,你能利用它說明勾股定理嗎?并與同伴交流。有人利用這4個直角三角形拼出了右圖,你能用兩種方法表示大正方形的面積嗎?大正
2024-11-30 03:22
【總結(jié)】勾股定理經(jīng)典復(fù)習題一、基礎(chǔ)達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢. B.
2025-06-22 07:15
【總結(jié)】,透明的圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內(nèi)壁離容器底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁,且離容器上沿3cm的點A處,則螞蟻吃到飯粒需爬行的最短路徑是A.13cm B.cm C.cm D.cm2.如圖,一只螞蟻沿著邊長為2的正方體表面從點A出發(fā),經(jīng)過3個面爬到點B,如果它運動的路徑是最短的,則AC的長為
2025-03-24 12:59
【總結(jié)】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.類型二:勾股定理的構(gòu)造應(yīng)用2、如圖,已知:在中,,,.求:BC的長.舉一反三【變式1】如
【總結(jié)】知識點及例題知識點一:勾股定理 如果直角三角形的兩直角邊長分別為:a,b,斜邊長為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方. 要點詮釋:(1)勾股定理揭示的是直角三角形平方關(guān)系的定理?! 。?)勾股定理只適用于直角三角形,而不適用于銳角三角形和鈍角三角?! 。?)理解勾股
2025-06-22 04:06