【總結(jié)】......勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求
2025-06-23 07:40
【總結(jié)】勾股定理的逆定理》教學(xué)設(shè)計(jì)邢臺(tái)縣晏家屯中學(xué)徐立萍學(xué)習(xí)目標(biāo)1.理解勾股定理的逆定理的證明方法和證明過程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角教學(xué)重難點(diǎn)勾股定理的逆定理及其應(yīng)用.勾股定理的逆定理的證
2025-01-07 14:03
【總結(jié)】勾股定理常考習(xí)題勾股定理的直接應(yīng)用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長(zhǎng)為()A:26B:18C:20D:212、在平面直角坐標(biāo)系中,已知點(diǎn)P的坐標(biāo)是(3,4),則OP的長(zhǎng)為()A:3B:4
2025-03-24 13:00
【總結(jié)】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-23 07:39
【總結(jié)】與直角有關(guān)的折疊問題(一),將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長(zhǎng)是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-03-24 12:58
【總結(jié)】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
【總結(jié)】11頁共11頁勾股定理經(jīng)典例題詳解熟悉下列勾股數(shù),對(duì)解題是會(huì)有幫助的: ?、?、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.類型二:勾股定理的構(gòu)造應(yīng)用1、如圖,已知:在中,,,.求:BC的長(zhǎng). ,已知:,,于P.求證:.:如圖,∠B=∠D=90°,∠A=60
【總結(jié)】勾股定理知識(shí)要點(diǎn)勾股定理:直角三角形中的兩直角邊的平方和等于斜邊的平方。關(guān)鍵詞:直角三角形勾股定理的逆定理:若一個(gè)三角形的某兩條邊的平方和等于剩余的一條邊的平方,則這個(gè)三角形一定是直角三角形。關(guān)鍵詞:判定直角三角形直角三角形的性質(zhì):在直角三角形中,為斜邊,為直角邊,為直角邊,是斜邊上的高。、、分別是邊、、的邊長(zhǎng)。勾股定理:。;其他性質(zhì):,,
2025-06-16 04:24
【總結(jié)】課題勾股定理及證明教案設(shè)計(jì)萬山鎮(zhèn)長(zhǎng)鋼初級(jí)中學(xué)張國(guó)保教學(xué)內(nèi)容勾股定理及簡(jiǎn)單應(yīng)用教學(xué)目標(biāo)〖知識(shí)與技能〗掌握勾股定理和他的簡(jiǎn)單應(yīng)用,理解定理的一般探究方法。〖過程與方法〗在方格紙上通過計(jì)
2025-01-07 19:53
【總結(jié)】探索勾股定理1請(qǐng)同學(xué)們畫四個(gè)與右圖全等的直角三角形,并把它剪下來。abc用這四個(gè)三角形拼一拼、擺一擺,看看是否得到一個(gè)含有以斜邊c為邊長(zhǎng)的正方形,你能利用它說明勾股定理嗎?并與同伴交流。有人利用這4個(gè)直角三角形拼出了右圖,你能用兩種方法表示大正方形的面積嗎?大正
2024-11-30 03:22
【總結(jié)】勾股定理經(jīng)典復(fù)習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.△ABC的三條邊長(zhǎng)分別是、、,則下列各式成立的是( ?。〢. B.
2025-06-22 07:15
【總結(jié)】,透明的圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離容器底部3cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁,且離容器上沿3cm的點(diǎn)A處,則螞蟻吃到飯粒需爬行的最短路徑是A.13cm B.cm C.cm D.cm2.如圖,一只螞蟻沿著邊長(zhǎng)為2的正方體表面從點(diǎn)A出發(fā),經(jīng)過3個(gè)面爬到點(diǎn)B,如果它運(yùn)動(dòng)的路徑是最短的,則AC的長(zhǎng)為
2025-03-24 12:59
【總結(jié)】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.類型二:勾股定理的構(gòu)造應(yīng)用2、如圖,已知:在中,,,.求:BC的長(zhǎng).舉一反三【變式1】如
【總結(jié)】知識(shí)點(diǎn)及例題知識(shí)點(diǎn)一:勾股定理 如果直角三角形的兩直角邊長(zhǎng)分別為:a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方. 要點(diǎn)詮釋:(1)勾股定理揭示的是直角三角形平方關(guān)系的定理。 ?。?)勾股定理只適用于直角三角形,而不適用于銳角三角形和鈍角三角?! 。?)理解勾股
2025-06-22 04:06