【總結(jié)】類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的
2025-03-24 13:00
【總結(jié)】知識點及例題知識點一:勾股定理 如果直角三角形的兩直角邊長分別為:a,b,斜邊長為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方. 要點詮釋:(1)勾股定理揭示的是直角三角形平方關(guān)系的定理。 ?。?)勾股定理只適用于直角三角形,而不適用于銳角三角形和鈍角三角?! 。?)理解勾股
2025-06-22 04:06
【總結(jié)】勾股定理1.勾股定理是把形的特征(三角形中有一個角是直角),轉(zhuǎn)化為數(shù)量關(guān)系(a2+b2=c2),不僅可以解決一些計算問題,而且通過數(shù)的計算或式的變形來證明一些幾何問題,特別是證明線段間的一些復(fù)雜的等量關(guān)系.在幾何問題中為了使用勾股定理,常作高(或垂線段)等輔助線構(gòu)造直角三角形.2.勾股定理的逆定理是把數(shù)的特征(a2+b2=c2)轉(zhuǎn)化為形的特征(三角形中的一個角是直角),可以有機(jī)地與式
2025-06-22 07:28
【總結(jié)】:如圖,在△ABC中,∠C=90°,點M在BC上,且BM=AC,點N在AC上,且AN=MC,AM與BN相交于點P,求證:∠BPM=45°答案:如圖,過點M作ME∥=(平行等于)AN,連NE,BE,則四邊形AMEN為平行四邊形得NE=AM,ME⊥BC∵M(jìn)E=CM,∠EMB=∠MCA=90°,BM=AC∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2
2025-06-23 07:41
【總結(jié)】典型例題知識點一、直接應(yīng)用勾股定理或勾股定理逆定理例1:如圖,在單位正方形組成的網(wǎng)格圖中標(biāo)有AB、CD、EF、GH四條線段,其中能構(gòu)成一個直角三角形三邊的線段是() A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF勾股定理說到底是一個等式,而含有未知數(shù)的等式就是方程。所以,在利用勾股定理求線段的長時
2025-06-22 04:18
【總結(jié)】4勾股定理及其逆定理復(fù)習(xí)典型例題1.勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三邊長:a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。2.勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反
2025-04-16 23:53
【總結(jié)】勾股定理的逆定理達(dá)標(biāo)訓(xùn)練一、基礎(chǔ)·鞏固,不是直角三角形的是()∶2∶3∶2∶3∶4∶5∶4∶5-2-4所示,有一個形狀為直角梯形的零件ABCD,AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是________cm(結(jié)果不取近似值).
2025-06-22 04:05
【總結(jié)】△ABC的周長為,其中斜邊,求這個三角形的面積。10.如果把勾股定理的邊的平方理解為正方形的面積,那么從面積的角度來說,勾股定理可以推廣.(1)如圖,以Rt△ABC的三邊長為邊作三個等邊三角形,則這三個等邊三角形的面積、、之間有何關(guān)系?并說明理由。(2)如圖,以Rt△ABC的三邊長為直徑作三個半圓,則這三個半圓的面積、、之間有何關(guān)系?(3)如果將上圖中的斜邊上的半圓沿斜邊翻折1
2025-03-24 12:59
【總結(jié)】勾股定理競賽培訓(xùn)題1、如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點C逆時針旋轉(zhuǎn)一個角度α(0°<α<90°),使點A,D,E在同一直線上,連接AD,BE.(1)①依題意補全圖2;②求證:AD=BE,且AD⊥BE;③作CM⊥DE,垂足為M,請用等式表示出線段CM,AE,BE之間的數(shù)量關(guān)系;(2)如圖3,正方形ABC
2025-06-28 00:04
2025-06-22 19:16
【總結(jié)】高任祿成勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
2025-06-22 07:15
2025-06-28 01:48
【總結(jié)】勾股定理經(jīng)典復(fù)習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.△ABC的三條邊長分別是、、,則下列各式成立的是( ?。〢. B.
【總結(jié)】《勾股定理》典型例題折疊問題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點B與點A重合,折痕為DE,則CD等于()A.B.C.D.
2025-03-24 13:01
【總結(jié)】折疊問題與勾股定理例題總結(jié)1.如圖,在矩形ABCD中,AB=6,BC=8。將矩形ABCD沿CE折疊后,使點D恰好落在對角線AC上的點F處。(1)求EF的長;(2)求梯形ABCE的面積。2.如圖所示,在?ABC中,AB=20,AC=12,BC=16,把?ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.3
2025-03-25 02:27