【總結(jié)】二次函數(shù)零點問題【探究拓展】探究1:設(shè)分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
2025-03-24 06:28
【總結(jié)】復(fù)習(xí)回顧:f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點判別式方程ax2+bx+c=0的根函數(shù)y=ax2+bx+c的零點?>0兩不相等實根兩個零點?=0兩相等實根一個零點?<0沒有實根
2024-11-10 22:54
【總結(jié)】方程的根和函數(shù)的零點思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2024-10-11 16:46
【總結(jié)】第1頁熱點難點微專題八含參函數(shù)的零點問題專題綜述典型例題課后作業(yè)熱點難點微專題八含參函數(shù)的零點問題第2頁熱點難點微專題八含參函數(shù)的零點問題專題綜述典型例題課后作業(yè)課時作業(yè)專題綜述含參函數(shù)的零點問題常以超越方程、分段函數(shù)等為載體,達(dá)到考察函數(shù)性質(zhì)、函
2025-08-05 09:41
【總結(jié)】函數(shù)與零點基礎(chǔ)回顧:零點、根、交點的區(qū)別零點存在性定理:f(x)是連續(xù)函數(shù);f(a)f(b)0二分法思想:零點存在性定理一、基礎(chǔ)知識—零點問題1.若函數(shù)在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是()A.若,不存在實數(shù)使得;B.若,存在且只存在一個實數(shù)使得;C.若,有可能存在實數(shù)使得;D.若
2025-03-24 12:15
【總結(jié)】函數(shù)的零點沈陽二中數(shù)學(xué)組思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程ax2+bx+c=0(a≠0)的根函數(shù)y=ax2+bx+c(a≠0)的圖象判別式△=b2-4ac△>0△=0△<0
2025-08-16 01:48
【總結(jié)】廣東省深圳市第三高級中學(xué)數(shù)學(xué)必修一《函數(shù)的零點》課件自學(xué)反饋?)0()(22的圖象有何關(guān)系的根與二次函數(shù)二次方程???????acbxaxxfcbxaxxy31?xy21?xy21?4?1322???xxy442???xxy542???xxy重點評析(以a&
2024-11-11 06:00
【總結(jié)】《方程的根與函數(shù)的零點》教學(xué)設(shè)計及教學(xué)反思一、背景分析1、學(xué)習(xí)任務(wù)分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是初等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。?原因是要用函數(shù)的觀點統(tǒng)帥中學(xué)數(shù)學(xué),,解方程的問題就變成了求函數(shù)的零點問題.就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后由
2025-04-19 05:40
【總結(jié)】方程的根與函數(shù)的零點方程解法史話:數(shù)學(xué)家方臺納的故事1535年,在意大利有一條轟動一時的新聞:數(shù)學(xué)家奧羅挑戰(zhàn)數(shù)學(xué)家方臺納,奧羅給方臺納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時間為20天,方臺納埋頭苦干,終于在最后一天解決了這個問題。方程的求解經(jīng)
2024-11-09 04:14
【總結(jié)】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實數(shù)根x1=-1,x2=3x1=x2=1無實數(shù)根(-1,0)、(3,0)(1,0)無交點x2-2x-
2024-11-24 13:41
【總結(jié)】1《方程的根與函數(shù)的零點》的教學(xué)設(shè)計湖北省黃岡市團風(fēng)中學(xué)胡建平教材分析本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教課書數(shù)學(xué)I必修本(A版)》的第三章的根與函數(shù)的的零點。函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是出等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。在現(xiàn)實生活實踐中,函數(shù)與方程都有著十分的應(yīng)用,在注重理論與實踐相結(jié)合的今天,
2024-11-21 04:35
2025-04-04 04:25
【總結(jié)】近年高考試卷中的N型函數(shù)零點個數(shù)問題賞析近些年來,有不少的N型函數(shù)零點個數(shù)問題出現(xiàn)在不同年份、不同省區(qū)與全國的高考試卷中,這不能不成為高考的熱門話題和需要我們研究并指導(dǎo)高三學(xué)生進行科學(xué)備考的一個重點內(nèi)容。什么是N型函數(shù)零點個數(shù)問題呢,就是含參函數(shù)在其定義域內(nèi)連續(xù)可導(dǎo),有兩個極值點、并將其定義域分成三個單調(diào)區(qū)間,通常是“增減增”或“減增減”,在此條件的基礎(chǔ)上,方程或的根的個數(shù)與參數(shù)取值范圍
2025-03-24 12:18
【總結(jié)】與三角函數(shù)有關(guān)的零點問題1、【2015湖北】函數(shù)的零點個數(shù)為______.【答案】2【解析】因為=,所以函數(shù)的零點個數(shù)為函數(shù)與圖象的交點的個數(shù),函數(shù)與圖象如圖,由圖知,兩函數(shù)圖象有2個交點,所以函數(shù)有2個零點.【方法技巧歸納】利用函數(shù)圖象處理函數(shù)的零點(方程根)主要有兩種策略:(1)確定函數(shù)零點的個數(shù):利用圖象研究與軸的交點個數(shù)或轉(zhuǎn)化成兩個函數(shù)圖象的交點個數(shù)定性判斷;(2
2025-03-24 05:48
【總結(jié)】思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?我們知道,令一個一元二次函數(shù)2(0)yaxbxca????的函數(shù)值y=0,則得到一元二次方程20(0)axbxca????問題1觀察下表(一),說出表中一元二次方程的實數(shù)根與相應(yīng)
2024-11-09 08:08