【總結(jié)】3.復(fù)數(shù)代數(shù)形式的乘除運(yùn)算掌握復(fù)數(shù)的乘法、除法的運(yùn)算法則并能熟練準(zhǔn)確地運(yùn)用法則解決相關(guān)的問題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.本節(jié)難點(diǎn):復(fù)數(shù)除法.1.復(fù)數(shù)乘法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2024-11-17 23:19
【總結(jié)】1.7定積分的簡單應(yīng)用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運(yùn)動的路程、變力作功等問題.本節(jié)重點(diǎn):應(yīng)用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運(yùn)動的路程、變力作功等實(shí)際問題.本節(jié)難點(diǎn):把實(shí)際問題抽象為定積分的數(shù)學(xué)模型.1.利用定
2024-11-17 23:15
【總結(jié)】①復(fù)數(shù)的分類a+bi?????實(shí)數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復(fù)數(shù)概念的問題,首先可找準(zhǔn)復(fù)數(shù)的實(shí)部與虛部(若復(fù)數(shù)為非標(biāo)準(zhǔn)代數(shù)形式,則應(yīng)通過代數(shù)運(yùn)算化為代數(shù)形式)
2024-11-17 23:14
【總結(jié)】1.4生活中的優(yōu)化問題舉例能利用導(dǎo)數(shù)知識解決實(shí)際生活中的最優(yōu)化問題.本節(jié)重點(diǎn):利用導(dǎo)數(shù)知識解決實(shí)際中的最優(yōu)化問題.本節(jié)難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立函數(shù)模型.1.解決實(shí)際應(yīng)用問題時(shí),要把問題中所涉及的幾個(gè)變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過分析、聯(lián)想、抽象和轉(zhuǎn)
【總結(jié)】1導(dǎo)數(shù)的運(yùn)算.2常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)3???,,.,,如何求它的導(dǎo)數(shù)呢?cái)?shù)對于函那么度體在某一時(shí)刻的瞬時(shí)速物理意義是運(yùn)動物點(diǎn)處的切線的斜率在某導(dǎo)數(shù)的幾何意義是曲線我們知道xfy???.,,,個(gè)定值所趨于的那時(shí)趨近于就是求出當(dāng)?shù)膶?dǎo)數(shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
2024-11-18 01:21
【總結(jié)】1.導(dǎo)數(shù)的概念對于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應(yīng)地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=
2024-11-17 19:03
【總結(jié)】"福建省長樂第一中學(xué)2020高中數(shù)學(xué)第一章《變化率問題》教案新人教A版選修2-2"教學(xué)目標(biāo):1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點(diǎn)處附近的平均變化率教學(xué)重點(diǎn):平均變化率的概念、函數(shù)在某點(diǎn)處附近的平均變化率;教學(xué)難點(diǎn):平均變化率的概念.教學(xué)過程:
2024-11-19 17:29
【總結(jié)】定義:函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率是0000()()li.mlimxxfxxfxyxx???????????,|)(00xxyxf???或00000()()()limlim.xxfxxfxyfxxx????
2024-11-18 12:13
【總結(jié)】導(dǎo)數(shù)的概念2121f(x)-f(x)y=xx-x11f(x+x)-f(x)=x復(fù)習(xí)割線AB的斜率3、在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:米)與起跳后的時(shí)間t(單位:秒)存在函數(shù)關(guān)系h(t)=++10.
2024-11-17 12:02
【總結(jié)】變化率問題一個(gè)變量相對于另一個(gè)變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
【總結(jié)】1.1.2導(dǎo)數(shù)的概念一.創(chuàng)設(shè)情景(一)平均變化率(二)探究:在高臺跳水運(yùn)動中,平均速度不能反映他在這段時(shí)間里運(yùn)動狀態(tài),需要用瞬時(shí)速度描述運(yùn)動狀態(tài)。我們把物體在某一時(shí)刻的速度稱為瞬時(shí)速度.又如何求瞬時(shí)速度呢????,?,.).tan(.,時(shí)的瞬時(shí)速度是多少比如
【總結(jié)】3.2復(fù)數(shù)代數(shù)形式的四則運(yùn)算3.復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義掌握復(fù)數(shù)加法、減法的運(yùn)算法則及其幾何意義,并能熟練地運(yùn)用法則解決相關(guān)的問題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的加減法.本節(jié)難點(diǎn):復(fù)數(shù)代數(shù)形式加減法的幾何意義.1.復(fù)數(shù)代數(shù)形式的加、減法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、
2024-11-17 17:04
【總結(jié)】1.導(dǎo)數(shù)的概念1.知道函數(shù)的瞬時(shí)變化率的概念,理解導(dǎo)數(shù)的概念.2.能利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):導(dǎo)數(shù)的定義.本節(jié)難點(diǎn):用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).對導(dǎo)數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負(fù),但Δx≠
【總結(jié)】1.了解復(fù)合函數(shù)的定義,并能寫出簡單函數(shù)的復(fù)合過程;2.掌握復(fù)合函數(shù)的求導(dǎo)方法,并運(yùn)用求導(dǎo)方法求簡單的復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):①導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則的應(yīng)用.②復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)難點(diǎn):復(fù)合函數(shù)的求導(dǎo)方法.復(fù)合函數(shù)的概念一般地,對于兩個(gè)函數(shù)y=f(u)和
【總結(jié)】平均變化率、瞬時(shí)速度與導(dǎo)數(shù)【教學(xué)目標(biāo)】,會求函數(shù)的平均變化率,知道函數(shù)的瞬時(shí)速度的概念,能利用導(dǎo)數(shù)的定義求導(dǎo)數(shù).,經(jīng)歷運(yùn)用數(shù)學(xué)描述和刻畫現(xiàn)實(shí)世界的過程【教學(xué)重點(diǎn)】導(dǎo)數(shù)【教學(xué)難點(diǎn)】導(dǎo)數(shù)一、課前預(yù)習(xí):(閱讀教材3、4頁,填寫相關(guān)知識點(diǎn)))(xfy?,10,xx是定義域內(nèi)不同的兩點(diǎn),令??x_
2024-12-03 11:30