【導讀】無窮限的反常積分也稱為第一類反常積分.并非不定型,說明:上述定義中若出現(xiàn)?!芭急镀媪恪钡男再|(zhì),否則會出現(xiàn)錯誤.1當p≠1時有1?而在點a的右鄰域。而在b的左鄰域內(nèi)無界,間斷點,而不是反常積分.則本質(zhì)上是常義積分,例5.討論反常積分的收斂性.
【總結(jié)】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【總結(jié)】第四章初等函數(shù)的導數(shù)與積分4-1對數(shù)函數(shù)的導數(shù)與積分4-2指數(shù)函數(shù)的導數(shù)與積分4-3三角函數(shù)的導數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-21 19:54
【總結(jié)】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應,
2025-04-28 23:40
【總結(jié)】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導數(shù)?1.原函數(shù)與不定積分的概念?2.積分計算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設f(z)在單連通區(qū)域B內(nèi)解析,則對B中任意曲線C,積分?cfdz與路徑
2025-05-13 18:11
【總結(jié)】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當xxxfx?問題:如何用數(shù)學語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設函數(shù)大于某一正數(shù)時有定義,若
2025-07-22 11:10
【總結(jié)】黃岡師范學院本科生畢業(yè)論文本科生畢業(yè)論文論文題目:反常積分與無窮級數(shù)收斂關(guān)系的討論黃岡師范學院本科生畢業(yè)論文NO.:2020211404032020200X2XX40XXX200X2XX40XXX
2025-08-17 15:54
【總結(jié)】黃岡師范學院本科生畢業(yè)論文本科生畢業(yè)論文論文題目:反常積分與無窮級數(shù)收斂關(guān)系的討論NO.:2011211404032008200X2XX40XXX200X2XX40XXX HuanggangNormalUniversityThesis
2025-06-27 23:08
【總結(jié)】YANGZHOUUNIVERSITYII第四節(jié)?基本積分法:直接積分法;換元積分法;分部積分法?初等函數(shù)求導初等函數(shù)積分機動目錄上頁下頁返回結(jié)束一、有理函數(shù)的積分二、可化為有理函數(shù)的積分舉例有理函數(shù)的積分本節(jié)內(nèi)容:
2024-11-03 22:45
【總結(jié)】第3節(jié)第二型(對坐標的)曲面積分一.曲面?zhèn)鹊母拍?雙側(cè)曲面:.,.,,nPnP來的相應的法向量也回到原置時續(xù)變化又回到原來的位邊界而任意連的不越過上在當點選定一個記為量作曲面的法向任一點上過一光滑曲面是設????.,,,面雙側(cè)曲面也稱為有向曲故曲面的側(cè)取定了法向量即選取了區(qū)分曲面的兩側(cè)量的指
2025-07-25 04:16
【總結(jié)】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應的函數(shù)值任意接近于有限值自
2025-08-21 12:44
【總結(jié)】第九章向量值函數(shù)的導數(shù)與積分●§向量值函數(shù)及其極限與連續(xù)★§向量值函數(shù)的導數(shù)與微分●§向量值函數(shù)的不定積分與定積分§向量值函數(shù)的導數(shù)與微分向量值函數(shù)的導數(shù)與微分內(nèi)容小結(jié)與作業(yè)空間曲線的切線及法平面方程Dept.Math.&Sys.Sc
2025-05-14 22:58
【總結(jié)】復變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復變函數(shù)與積分變換第二章解析函數(shù)1解析函數(shù)的概念2函數(shù)解析的充要條件3初等函數(shù)復變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復變函數(shù)與積分變換
2025-08-20 01:27
【總結(jié)】第十節(jié)函數(shù)的極值與最值一、函數(shù)的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個極大值點(或極小值點)極大值點與極小值點統(tǒng)稱為極值點.極大值與極小值統(tǒng)稱為極值.
2025-07-22 11:11
【總結(jié)】返回后頁前頁§3有理函數(shù)和可化為一、有理函數(shù)的部分分式分解本節(jié)給出了求有理函數(shù)等有關(guān)類型的四、某些無理函數(shù)的不定積分三、三角函數(shù)有理式的不定積分二、有理真分式的遞推公式有理函數(shù)的不定積分不定積分的方法與步驟.返回返回后頁前頁101101()()()n
2025-08-11 09:08
【總結(jié)】復變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復變函數(shù)與積分變換一、問題的解決思路分析解析函數(shù)所具備的特征,再推證具備此特征的函數(shù)是否解析0000()()()fzzfzzwfzz???在
2025-07-31 08:54