【總結】第一講極限及其運算法則定理:.)(lim)(lim)(lim000AxfxfAxfxxxxxx?????????例1、求下列函數(shù)極限。);(lim)()1(0xfxxfx??);(lim][)()2(1xfxxfx??).(lim010001s
2025-08-05 05:42
【總結】二、數(shù)列的有關概念四、收斂數(shù)列的性質五、小結思考題三、數(shù)列極限的定義第一節(jié)數(shù)列的極限一、引例“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1.割圓術:播放——劉徽一、引例R正六邊形的面積1A正十二邊形的面積2A????正
2025-08-21 12:40
【總結】一、六個基本積分二、待定系數(shù)法舉例三、小結第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個多項式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39
【總結】曲率是描述曲線局部性質(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉角越大.轉角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【總結】2022/2/131作業(yè)P34習題3(2)(3).P39習題1(2)(3).2(2)(6)(9)(13).3(1)預習:P40—492022/2/132第二講函數(shù)極限一、函數(shù)極限二、函數(shù)極限的性質三、函數(shù)極限的運算法則四、兩個重要極限
2025-01-16 06:19
【總結】1多元函數(shù)的微積分主要內容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應,
2025-04-28 23:40
【總結】高等院校非數(shù)學類本科數(shù)學課程——一元微積分學大學數(shù)學(一)第四講數(shù)列極限收斂準則、無窮小量、極限運算腳本編寫、教案制作:劉楚中彭亞新鄧愛珍劉開宇孟益民第二章數(shù)列的極限與常數(shù)項級數(shù)的含義。和極限。正確理解》語言描述數(shù)列的會用《了解數(shù)列極限的概念,
2025-04-29 06:27
【總結】第十節(jié)函數(shù)的極值與最值一、函數(shù)的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個極大值點(或極小值點)極大值點與極小值點統(tǒng)稱為極值點.極大值與極小值統(tǒng)稱為極值.
2025-07-22 11:11
【總結】復合函數(shù)求導法則性質且點可導在則點可導在而點可導在設,)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫成導函數(shù)的形式為簡寫為)()(00x
2025-01-20 05:44
【總結】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內所經過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結】微積分極限法問題詳析沈衛(wèi)國(西北工業(yè)大學前邏輯與人工智能研究所,西安710072)摘要:為了解決牛頓、萊布尼茲求導法所產生的貝克萊悖論問題,微積分極限法(標準分析)被提出。但后者成立的前提是這個極限必須存在。筆者經分析得到結論,增量比值
2025-06-07 19:22
【總結】第五節(jié)函數(shù)關系的建立例1在一條直線公路的一側有A、B兩村,其位置如圖1-1所示,公共汽車公司欲在公路上建立汽車站M.A、B兩村各修一條直線大道通往汽車站,設CM=x(km),試把A、B兩村通往M的大道總長y(km)表示為x的函數(shù).ABCDM2kmx
2025-08-21 12:45
【總結】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
【總結】定義1設函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2025-07-22 11:10
【總結】第六章多元函數(shù)微積分教學重點:本章重點講授多元函數(shù)的基本概念、偏導、全微分、復合函數(shù)微分法與隱函數(shù)微分法、多元函數(shù)的極值及其求法、二重積分的計算。教學難點:本章難點為復合函數(shù)微分法與隱函數(shù)微分法、多元函數(shù)極值的求法、二重積分的計算。教學內容:在前面幾章中,我們討論的函數(shù)都只有一個自變量,這種函數(shù)稱為一元函數(shù).但在許多實際問題中,我們往往要考
2025-08-21 19:47