【總結(jié)】§高斯消元法解線性方程組一、線性方程組的矩陣表示二、用高斯消元法求解線性方程組三、小結(jié)在第1章的,我們學(xué)習(xí)過用Gramer’法則解形如)1(22112222212111212111???????????????????nnnnnnnnnnbxaxaxabxaxaxa
2025-08-05 18:07
【總結(jié)】第一節(jié)矩陣矩陣概念的引入矩陣的定義小結(jié)第二章矩陣11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb???????????
2025-08-05 10:12
【總結(jié)】泰山學(xué)院信息科學(xué)技術(shù)系DepartmentofInformationScienceandTechnology,TaishanCollege第三章解線性方程組的直接法實(shí)際中,存在大量的解線性方程組的問題。很多數(shù)值方法到最后也會(huì)涉及到線性方程組的求解問題:如樣條插值的M和m關(guān)系式,曲線擬合的法方程,方程組的Newton迭代
2025-07-23 09:40
【總結(jié)】第二章解線性方程組的直接法第二章解線性方程組的直接法?引言?Gauss消元法?列主元素消元法?矩陣三角分解法?向量和矩陣的范數(shù)?誤差分析引言?小行星軌道問題:天文學(xué)家要確定一小行星的軌道,在軌道平面建立以太陽(yáng)為原點(diǎn)的直角坐標(biāo)系。在坐標(biāo)軸上取天文測(cè)量單
2025-01-19 15:07
【總結(jié)】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2025-07-24 07:09
【總結(jié)】1第六節(jié)線性方程組解的結(jié)構(gòu)一、齊次線性方程組解的結(jié)構(gòu)二、非齊次線性方程組解的結(jié)構(gòu)2?2020,HenanPolytechnicUniversity2§6線性方程組解的結(jié)構(gòu)第三章線性方程組所謂解的結(jié)構(gòu)就是解與解之間的關(guān)系。下面我們將證明,雖然在這時(shí)有無窮多解但是全部的解都
2024-10-17 12:07
【總結(jié)】常系數(shù)線性方程組基解矩陣的計(jì)算董治軍(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖238000)摘要:微分方程組在工程技術(shù)中的應(yīng)用時(shí)非常廣泛的,不少問題都?xì)w結(jié)于它的求解問題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無法通過積分得到的,但當(dāng)系數(shù)矩陣是常數(shù)矩陣時(shí),可以通過方法求出基解矩陣,這時(shí)可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對(duì)應(yīng)用最廣泛的常系數(shù)
2025-06-23 07:32
【總結(jié)】第六章非線性方程組的迭代解法非線性方程組的數(shù)值解法非線性方程組的Newton法非線性方程組的Newton法非線性方程組的不動(dòng)點(diǎn)迭代法第六章非線性方程組的迭代解法第六章非線性方程組的迭代解法學(xué)習(xí)目標(biāo):第六章非線性方程組的迭代解法TnxfxfxfxF))()
2024-09-30 09:49
【總結(jié)】西安電子科技大學(xué)理學(xué)院主講:王衛(wèi)衛(wèi)第七章線性方程組的直接解法/*Directmethodsforthesolutionoflinearsystems*/線性方程組:11112211211222221122nnnnnnnnnnaxaxaxbax
2024-12-08 01:07
【總結(jié)】//解線性方程組#include#include#include//----------------------------------------------全局變量定義區(qū)constintNumber=15; //方程最大個(gè)數(shù)doublea[Number][Number],b[Number],copy
2025-07-26 10:39
【總結(jié)】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類?低階稠密矩陣(例如,階數(shù)不超過150)(一般用直接法來求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來求解)線性方程組的數(shù)值解法分類?直接法經(jīng)過有限步算術(shù)運(yùn)算,可求得方程組精確解的方法。
2025-07-23 10:31
【總結(jié)】第三章解線性方程組的直接法《計(jì)算方法》第三章解線性方程組的直接法數(shù)學(xué)科學(xué)學(xué)院房秀芬第三章解線性方程組的直接法?引言?Gauss消元法?列主元素消元法?矩陣三角分解法?向量和矩陣的范數(shù)?誤差分析《計(jì)算方法》第三章解線性方程組的直接法
2025-01-19 10:19
【總結(jié)】第三章解線性方程組的直接方法§1解線性方程組的Gauss消去法§2直接三角分解法§3行列式和逆矩陣的計(jì)算§4向量和矩陣的范數(shù)§5Gauss消去法的浮點(diǎn)舍入誤差分析§1解線性方程組的Gauss消去法Gauss
2025-02-19 03:59
【總結(jié)】第五章解線性方程組的直接法引言與預(yù)備知識(shí)高斯消去法高斯主元消去法矩陣三角分解法向量和矩陣的范數(shù)誤差分析引言與預(yù)備知識(shí)自然科學(xué)和工程技術(shù)中有很多問題的解決需要用到線性方程組的求解。這些線性方程組的系數(shù)矩陣大致可分為兩類。1)低階稠密矩陣2)大型稀疏矩陣
2025-07-21 17:12
【總結(jié)】n維向量與線性方程組主要內(nèi)容:(1)向量的線性相關(guān)性(2)向量組的最大無關(guān)組與秩(3)線性方程組解的結(jié)構(gòu)與通解定義:定義:n維行向量(或行陣):n維列向量列向量(或列矩陣列矩陣):常用的記號(hào)是希臘字母常用的記號(hào)是希臘字母如果向量的元素如果向量的元素在復(fù)數(shù)域上在復(fù)數(shù)域上,全體,全體n維向量
2025-07-17 13:23