【總結(jié)】§非線性方程組的迭代解法§預備知識一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2025-07-24 07:09
【總結(jié)】LU分解法求解線性方程組L為下三角,U為單位上三角???????????????????????????????????????????nnnnnnnnnnnnuuuuu
2025-07-26 08:09
【總結(jié)】線性方程組解的結(jié)構(gòu).齊次線性方程組.非齊次線性方程組齊次線性方程組???????????????????000221122221211212111nmnmmnnnnxaxaxaxaxaxaxaxaxa???????
2024-10-14 17:26
【總結(jié)】第三章線性方程組的解法§2 作業(yè)講評2§引言§雅可比(Jacobi)迭代法§高斯-塞德爾(Gauss-Seidel)迭代法§超松馳迭代法§迭代法的收斂性§高斯消去法§高斯主元素消去法§3 作業(yè)講評3§三角分解法§追趕法
2025-08-17 03:33
【總結(jié)】常系數(shù)線性方程組基解矩陣的計算董治軍(巢湖學院數(shù)學系,安徽巢湖238000)摘要:微分方程組在工程技術中的應用時非常廣泛的,不少問題都歸結(jié)于它的求解問題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無法通過積分得到的,但當系數(shù)矩陣是常數(shù)矩陣時,可以通過方法求出基解矩陣,這時可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對應用最廣泛的常系數(shù)
2025-06-23 07:32
【總結(jié)】第二章線性方程組高斯消元法矩陣的秩線性方程組解的判定線性方程組的解取決于???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????2211
2025-08-01 13:03
【總結(jié)】1、齊次線性方程組的結(jié)構(gòu)設n元齊次線性方程組???????????????????0,0,0221122221211212111nmnmmnnnnxaxaxaxaxaxaxaxaxa????????????????線性方程組的結(jié)構(gòu)120),(,,
2025-07-17 13:25
【總結(jié)】1分別用矩陣求逆、矩陣除法以及矩陣分解求線性方程的解。2下面是一個線性病態(tài)方程組:(1)求方程的解。(2)將方程右邊向量元素b3改為[::],再求解,并比較b3的變化和解的相對變化。(3)計算系數(shù)矩陣A和條件數(shù)并分析結(jié)論。解:1-1A=[2,3,5;3,7,4;1,-7,1];B=[10,3,5]X=A\B.'
2025-03-24 07:03
【總結(jié)】1第三章解線性方程組的迭代法?Jacobi迭代法?Gauss-Seidel迭代法?迭代法的收斂條件(充要條件,充分條件)bAx?求?迭代法概述2?迭代法概述gMxxbAx????等價線性方程組取初始向量x(0)?Rn,構(gòu)造如下單步定常線性迭代公式),2,1,0(
2024-10-16 21:26
【總結(jié)】第6章解線性方程組的迭代法直接方法比較適用于中小型方程組。對高階方程組,即使系數(shù)矩陣是稀疏的,但在運算中很難保持稀疏性,因而有存儲量大,程序復雜等不足。迭代法則能保持矩陣的稀疏性,具有計算簡單,編制程序容易的優(yōu)點,并在許多情況下收斂較快。故能有效地解一些高階方程組。1迭代法概述迭代法的基本思想是構(gòu)造一串收斂到解的序列,即建立一種從已有近似解計算新的近似解的規(guī)則。由不同的計
2025-08-23 01:55
【總結(jié)】第五章解線性方程組的直接法引言與預備知識高斯消去法高斯主元消去法矩陣三角分解法向量和矩陣的范數(shù)誤差分析引言與預備知識自然科學和工程技術中有很多問題的解決需要用到線性方程組的求解。這些線性方程組的系數(shù)矩陣大致可分為兩類。1)低階稠密矩陣2)大型稀疏矩陣
2025-07-21 17:12
【總結(jié)】n維向量與線性方程組主要內(nèi)容:(1)向量的線性相關性(2)向量組的最大無關組與秩(3)線性方程組解的結(jié)構(gòu)與通解定義:定義:n維行向量(或行陣):n維列向量列向量(或列矩陣列矩陣):常用的記號是希臘字母常用的記號是希臘字母如果向量的元素如果向量的元素在復數(shù)域上在復數(shù)域上,全體,全體n維向量
2025-07-17 13:23
【總結(jié)】//解線性方程組#include#include#include//----------------------------------------------全局變量定義區(qū)constintNumber=15; //方程最大個數(shù)doublea[Number][Number],b[Number],copy
2025-07-26 10:39
【總結(jié)】第三章線性方程組:1.設矩陣A=,若齊次線性方程組Ax=0有非零解,則數(shù)t=(2)2.若5階矩陣A的秩R(A)=2,則齊次方程Ax=0的基礎解系所含向量的個數(shù)是(3)3.設非齊次線性方程組Ax=b的增廣矩陣為,則該方程組的通解為()4.設四元非齊次線性方程組的系數(shù)矩陣A的秩為3,已經(jīng)它的三個解向量為其中,則該方程組的通解為(
2025-08-17 04:58
【總結(jié)】第四章線性方程組消元法矩陣的秩線性方程組可解的判別法線性方程組的公式解結(jié)式和判別式偉大的數(shù)學家,諸如阿基米得、牛頓和高斯等,都把理論和應用視為同等重要而緊密相關?!巳R因(KleinF,1849-1925)消元法線性方程組的初等變換矩陣的初等變
2025-07-21 03:58