【導(dǎo)讀】平移后對(duì)應(yīng)點(diǎn)A′的坐標(biāo);稱,求平移后的曲線方程.上的對(duì)應(yīng)點(diǎn)為P′.將它代入到y(tǒng)=2x2中,所以F′的函數(shù)解析式為y=2x2-8x+6.已知條件知,關(guān)于原點(diǎn)對(duì)稱,用特殊點(diǎn)的變化來(lái)驗(yàn)證所求問(wèn)題.即y′=x′2+x′+h2-4h+5+k.數(shù)λ的取值范圍.解:原曲線即為(x+2)2+2(y+1)2=2,則平移后的曲線C的方程為x2+2y2=2,不存在,說(shuō)明理由.線上任意一點(diǎn),平移后得對(duì)應(yīng)點(diǎn),令y′=0,則x′=h±.