【總結(jié)】課題任意角的三角函數(shù)(二)教學目標知識與技能利用三角函數(shù)線表示正弦、余弦、正切的三角函數(shù)值;利用三角函數(shù)線比較同名三角函數(shù)值的大小及表示角的范圍。過程與方法掌握用單位圓中的線段表示三角函數(shù)值;從而使學生對三角函數(shù)的定義域、值域有更深的理解。情感態(tài)度價值觀學習轉(zhuǎn)化的思想,培養(yǎng)學生嚴謹治學、一絲不茍的科
2024-11-19 23:27
【總結(jié)】【金版學案】2021-2021學年高中數(shù)學第3章三角恒等變換本章知識整合蘇教版必修4網(wǎng)絡構(gòu)建求值題三角函數(shù)的求值主要有兩類題型,給角求值與給值求值.給角求值一般是利用和、差、倍角公式進行變換,使其出現(xiàn)特殊角,若為非特殊角,則應變?yōu)榭上セ蚣s分的情況,從而求出其值.給值求值一般應先化簡所求的式子
2024-12-08 05:55
【總結(jié)】三角函數(shù)模型的簡單應用學習目標:會用三角函數(shù)解決一些簡單的實際問題;體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型.學習重點:三角函數(shù)的實際應用學習難點:三角函數(shù)模型的建立【學法指導】三角函數(shù)是刻畫周期現(xiàn)象的重要模型,利用三角函數(shù)模型解決實際問題時,要注意充分依據(jù)收集的數(shù)據(jù),畫出“散點圖”,觀察“散點圖”的特征
2024-12-05 01:56
【總結(jié)】任意角的三角函數(shù)課本例題是我們學習的模版,我們可以通過模仿它完成其他同類練習,還可以通過掌握它的思想促類旁通、舉一反三。如果在平時學習中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實際上是考查同角三角函數(shù)關(guān)系中平方關(guān)系以及商數(shù)關(guān)系的直接應用。
2024-11-19 20:39
【總結(jié)】任意角的三角函數(shù)【學習要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內(nèi)的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學法指導】1.在初中所學習的銳角三角函數(shù)的基礎(chǔ)上過渡到任意角三角函數(shù)的概
【總結(jié)】同角的三角函數(shù)的基本關(guān)系一、關(guān)于教學內(nèi)容的思考教學任務:幫助學生推導同角三角函數(shù)的兩個基本關(guān)系及推論.教學目的:引導學生掌握“知一求二”的思路及變形方法。教學意義:培養(yǎng)學生認識三角關(guān)系式之間相互聯(lián)系的主動性。二、教學過程1.同角三角函數(shù)的基本關(guān)系:(理解并推導)①平方關(guān)系:1cossin22????;②
2024-11-19 19:36
【總結(jié)】利用三角函數(shù)定義解題設(shè)角?的終邊上任意一點P的坐標是),(yx,它與原點的距離是r(22yxr??),那么ry??sin,rx??cos,xy??tan,利用三角函數(shù)的定義,可巧妙地解決一類三角函數(shù)題。一、求值:例1:已知31tan??x,求????22coscossin2sin3
【總結(jié)】任意角的三角函數(shù)【學習要求】1.掌握正弦、余弦、正切函數(shù)的定義域.2.了解三角函數(shù)線的意義,能用三角函數(shù)線表示一個角的正弦、余弦和正切.3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.【學法指導】1.三角函數(shù)線是利用數(shù)形結(jié)合的思想解決有關(guān)問題的重要工具,利用三角函數(shù)線可以解或證明三角不等式,求函數(shù)的定義域及比較大小,三角函數(shù)線也是后面將
【總結(jié)】簡單的三角恒等變換一.復習:二倍角公式:sin22sincos????22cos2cossin?????22tantan21tan?????22cos1???212sin???2()S?2()C?2()T?,,()24R
2025-06-05 22:31
【總結(jié)】三角函數(shù)模型的簡單應用1.方程|x|=cosx在(-∞,+∞)內(nèi)()A.沒有根B.有且僅有一個根C.有且僅有兩個根D.有無窮多個根解析:結(jié)合函數(shù)y=cosx和y=|x|的圖象可知,方程|x|=cosx有且僅有兩根.答案:C2.電流I(A)隨時間t(s)變化的關(guān)系是I=3s
【總結(jié)】三角函數(shù)模型的簡單應用一、備用習題圖1212是周期為2π的三角函數(shù)y=f(x)的圖象,那么f(x)可寫成()(1+x)(-1-x)(x-1)(1-x)y=x+sin|x
2024-12-05 06:48
【總結(jié)】1.6三角函數(shù)模型的簡單應用重點:用三角函數(shù)模型來刻畫具有周期變化規(guī)律的實際問題.難點:對問題實際意義的數(shù)學解釋,從實際問題中抽象出三角函數(shù)模型.一、三角函數(shù)在物理等其它學科中的應用各學科的知識可以相互應用,如物理學中的振動、波的傳播、電流、生物學中的某些生活規(guī)律等,都可以用三角函數(shù)來模擬.例1彈簧掛著的小球作上下振動,它在時間t(s
【總結(jié)】三角函數(shù)模型的簡單應用考查知識點及角度難易度及題號基礎(chǔ)中檔稍難函數(shù)的圖象、解析式問題4、56、7函數(shù)模型的應用1、38、9擬合函數(shù)問題2101.如圖,單擺從某點開始來回擺動,離開平衡位置O的距離s(cm)和時間t(s)的函數(shù)解析式為s=6sin??????2πt+π6,那
2024-12-04 23:46
【總結(jié)】三角函數(shù)的誘導公式一、錯解點擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明理由.錯解:將已知條件化為???????,cos2
【總結(jié)】任意角【學習要求】1.理解正角、負角、零角與象限角的概念.2.掌握終邊相同角的表示方法.【學法指導】1.解答與任意角有關(guān)的問題的關(guān)鍵在于抓住角的四個“要素”:頂點、始邊、終邊和旋轉(zhuǎn)方向.2.確定任意角的大小要抓住旋轉(zhuǎn)方向和旋轉(zhuǎn)量.3.學習象限角時,注意角在直角坐標系中的放法,在這個統(tǒng)一前提下,才能對終邊落在坐標軸上的
2024-12-04 23:47