【導讀】,得sinβ=32,cosβ=cosβ。即光線在玻璃中的行程為cm.素互相作用時,這些波動形式多少有點隨機性.19世紀初,對海浪在數(shù)學上開展了很多研究.軌道的直徑的一半.因為波浪與這些圓周運動的水粒有關,并且因為正弦曲線和擺線也與轉動著的圓有關,浪時必須考察的變量中的幾個而已.今天研究波浪時,用到了概率、,統(tǒng)計學這些數(shù)學工具.人們考察了大量小波,并依據所收集到的數(shù)據提出預測.
【總結】任意角的三角函數(shù)課本例題是我們學習的模版,我們可以通過模仿它完成其他同類練習,還可以通過掌握它的思想促類旁通、舉一反三。如果在平時學習中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實際上是考查同角三角函數(shù)關系中平方關系以及商數(shù)關系的直接應用。
2024-11-19 20:39
【總結】三角函數(shù)的誘導公式一、錯解點擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明理由.錯解:將已知條件化為???????,cos2
【總結】三角函數(shù)的誘導公式命題方向1求值問題利用誘導公式求任意角三角函數(shù)的步驟(1)“負化正”——用公式一或三來轉化;(2)“大化小”——用公式一將角化為0°到360°間的角;(3)“小化銳”——用公式二或四將大于90°的角轉化為銳角;(4)“銳求值”——得到銳角的三角
2024-11-19 18:39
【總結】《三角函數(shù)模型的簡單應用》(第1課時)教案教材:人教A版·普通高中課程標準實驗教科書·數(shù)學·必修4【教學目標】知識與技能:深刻體會三角函數(shù)模型應用的三個層次,靈活運用三角函數(shù)圖像與性質求解實際問題的方法;學會分析問題并創(chuàng)造性地解決問題。過程與方法:在自主探究的活動中,明白考慮問題要細致,說理要明確;滲透數(shù)形結合、化歸的數(shù)學思想,對學
2025-06-08 00:02
【總結】1.“直線上升,對數(shù)增長,指數(shù)爆炸”的增長特點;2.數(shù)學建模大致過程。知識回顧新知探究?何時?)時,何時,( ?、诋?shù)慕獾膫€數(shù)有幾個? ?、俜匠?222202xxxxxxx??????探究1:恒成立嗎?情況怎樣?增長與)時,,( 當nxnxx
2024-11-17 19:42
【總結】任意角的三角函數(shù)考查知識點及角度難易度及題號基礎中檔稍難三角函數(shù)線的概念問題1、2、3三角函數(shù)線的應用4、5、68、9其他問題7、10111.已知MP,OM,AT分別為60°角的正弦線、余弦線和正切線,則下列結論正確的是()A.MP<OM<AT
2024-11-19 23:27
【總結】同角的三角函數(shù)的基本關系重點:基本關系式及其應用.難點:基本關系式的特征及推導.一、求角的正弦值、余弦值、正切值這類問題是已知某角的某個函數(shù)值,求該角的其它函數(shù)值.例1已知cosα=-35,求sinα,tanα的值.【分析】討論α分別在第二、三象限求值.【解】∵cosα0且cosα
【總結】任意角的三角函數(shù)【學習要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學法指導】1.在初中所學習的銳角三角函數(shù)的基礎上過渡到任意角三角函數(shù)的概
【總結】課題任意角的三角函數(shù)教學目標知識與技能任意角的三角函數(shù)的定義,會求角α的各三角函數(shù)值過程與方法正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)情感態(tài)度價值觀學習轉化的思想,培養(yǎng)學生嚴謹治學、一絲不茍的科學精神重點任意角的三角函數(shù)的定義;以及這三種函數(shù)的第一組誘導公式。難點用
【總結】任意角的三角函數(shù)【學習要求】1.掌握正弦、余弦、正切函數(shù)的定義域.2.了解三角函數(shù)線的意義,能用三角函數(shù)線表示一個角的正弦、余弦和正切.3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.【學法指導】1.三角函數(shù)線是利用數(shù)形結合的思想解決有關問題的重要工具,利用三角函數(shù)線可以解或證明三角不等式,求函數(shù)的定義域及比較大小,三角函數(shù)線也是后面將
【總結】課題任意角的三角函數(shù)(二)教學目標知識與技能利用三角函數(shù)線表示正弦、余弦、正切的三角函數(shù)值;利用三角函數(shù)線比較同名三角函數(shù)值的大小及表示角的范圍。過程與方法掌握用單位圓中的線段表示三角函數(shù)值;從而使學生對三角函數(shù)的定義域、值域有更深的理解。情感態(tài)度價值觀學習轉化的思想,培養(yǎng)學生嚴謹治學、一絲不茍的科
【總結】3.2簡單的三角恒等變換重點:各種公式的正用、逆用、變形用.難點:各種公式的內在聯(lián)系.一、三角函數(shù)式的化簡問題對于三角函數(shù)式的化簡有下面的要求:(1)能求出值的應求出值.(2)使三角函數(shù)種數(shù)盡量少.(3)使三角函數(shù)式中的項數(shù)盡量少.(4)盡量使分母不含有三角函數(shù).(5)盡量使被開方數(shù)不含有三角函數(shù).例1.化簡2c
2024-11-19 19:09
【總結】同角三角函數(shù)的基本關系考查知識點及角度難易度及題號基礎中檔稍難求值問題2、3、48、10化簡證明問題1、5、67、9綜合問題11121.化簡(1+tan2α)·cos2α等于()A.-1B.0C.1D.2解析:原
【總結】三角函數(shù)的誘導公式【學習要求】1.了解三角函數(shù)的誘導公式的意義和作用.2.理解誘導公式的推導過程.3.能運用有關誘導公式解決一些三角函數(shù)的求值、化簡和證明問題.【學法指導】1.本節(jié)將要學習的誘導公式既是公式一的延續(xù),又是后繼學習內容的基礎,廣泛應用于求任意角的三角函數(shù)值以及有關三角函數(shù)的化簡、證明等問題.2.這組誘導公式的推導
【總結】三角函數(shù)的誘導公式考查知識點及角度難易度及題號基礎中檔稍難給角(值)求值問題1、2、49化簡求值問題57、8綜合問題36、10、11121.已知sin40°=a,則cos130°等于()A.aB.-aC.1-
2024-11-19 23:26