【總結(jié)】§.余弦定理(2)知識(shí)改變命運(yùn),勤奮成就未來.三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。Abccbacos2222???Baccabcos2222???Cabbaccos2222???余弦定理22222
2024-11-18 08:48
【總結(jié)】余弦定理復(fù)習(xí)回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其它的邊和角).第二種情況若知道的是大邊的對(duì)角,只有唯一的一組解;若給出的是小邊的對(duì)角,則結(jié)
2024-11-17 23:32
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時(shí) 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會(huì)向量的工具性; 3.能初步運(yùn)用余弦定理解斜三角形....
2024-10-26 01:32
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡單的實(shí)際問題轉(zhuǎn)化為...
2024-10-28 16:14
【總結(jié)】解三角形第二章§1正弦定理與余弦定理第二章第2課時(shí)余弦定理課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)中國海監(jiān)船肩負(fù)著我國海域的維權(quán)、執(zhí)法使命.某時(shí)某中國海監(jiān)船位于中國南海的A處,與我國海島B相距s海里.據(jù)觀測
2024-11-17 03:39
【總結(jié)】BCA創(chuàng)設(shè)情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學(xué)理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學(xué)理論.2cos,2cos,2cos22222
【總結(jié)】余弦定理(一)課時(shí)目標(biāo);.1.余弦定理三角形任何一邊的______等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的______.即a2=________________,b2=________________,c2=________________.2.余弦定理的推論cosA=_
2024-12-05 10:14
【總結(jié)】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)(1)導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】1.熟記并寫出正弦定理的內(nèi)容2.會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題【學(xué)習(xí)重點(diǎn)】正弦定理的證明及其基本應(yīng)用【學(xué)法指導(dǎo)】通過對(duì)特殊三角形邊角間數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,初步學(xué)會(huì)運(yùn)用由特殊到一般的思想方法發(fā)現(xiàn)
2024-11-19 15:46
【總結(jié)】高一數(shù)學(xué)導(dǎo)學(xué)案必修5第六課時(shí)正弦定理、余弦定理的應(yīng)用(2)一、學(xué)習(xí)目標(biāo)(1)能熟練應(yīng)用正弦定理、余弦定理解決三角形等一些幾何中的問題和物理問題;(2)能把一些簡單的實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,并能應(yīng)用正弦、余弦定理及相關(guān)的三角公式解決這些問題;(3)通過復(fù)習(xí)、小結(jié),使學(xué)生牢固掌握兩個(gè)定理,應(yīng)用自如.二、學(xué)習(xí)重點(diǎn),難點(diǎn)能熟練應(yīng)用正弦定理、余弦定理及相關(guān)公式解決三
2025-06-07 23:18
【總結(jié)】第2課時(shí)數(shù)列的函數(shù)特性,能用函數(shù)的觀點(diǎn)研究數(shù)列.,并應(yīng)用單調(diào)性求最大(小)項(xiàng).n項(xiàng)和公式求出其通項(xiàng)公式.寫出數(shù)列0,2,4,6,8,…的通項(xiàng)公式an=2n-2后,發(fā)現(xiàn)an=2n-2與一次函數(shù)f(x)=2x-2有相似之處,只不過是自變量從x換到了n,數(shù)列也可看成一種函數(shù).問
2024-12-08 02:37
【總結(jié)】余弦定理A組基礎(chǔ)鞏固1.邊長為5,7,8的三角形的最大角與最小角之和為()A.90°B.120°C.135°D.150°解析:設(shè)長為7的邊所對(duì)的角為θ,由已知條件可知角θ為中間角.∵cosθ=52+82-7223538=
2024-12-09 03:49
【總結(jié)】12直角三角形中的邊角關(guān)系:CBAabc1、角的關(guān)系:A+B+C=180°A+B=C=90°2、邊的關(guān)系:a2+b2=c23、邊角關(guān)系:sinA=—=cosBsinB=—=cosAacbc復(fù)習(xí)3CBAabc
2025-05-07 12:06
【總結(jié)】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點(diǎn)D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
【總結(jié)】余弦定理(二)課時(shí)目標(biāo)、余弦定理;、余弦定理解三角形的有關(guān)問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
【總結(jié)】余弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.在△ABC中,邊a、b、c所對(duì)的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
2024-11-19 23:20