【總結(jié)】第一頁,編輯于星期六:點(diǎn)二十九分。,第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理,第二頁,編輯于星期六:點(diǎn)二十九分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)二十九分。,...
2025-10-13 18:39
【總結(jié)】第2課時(shí)余弦定理...如圖,某隧道施工隊(duì)為了開鑿一條山地隧道,需要測算隧道通過這座山的長度.工程技術(shù)人員先在地面上選一適當(dāng)?shù)奈恢肁,量出A到山腳B、C的距離,其中AB=km,AC=1km,再利用經(jīng)緯儀測出A對(duì)山腳BC(即線段BC)的張角∠BAC=150
2024-12-08 02:37
【總結(jié)】正弦定理(1)【學(xué)習(xí)目標(biāo)】1.通過對(duì)直角三角形邊角間數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理.2.能夠利用向量方法證明正弦定理,并運(yùn)用正弦定理解決兩類解三角形的簡單問題.【重點(diǎn)難點(diǎn)】1.重點(diǎn):正弦定理的發(fā)現(xiàn),證明及其簡單應(yīng)用.2.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過程】一、自主學(xué)習(xí):任務(wù)1:在直角三角形中三角形的邊與
2024-12-08 20:25
【總結(jié)】§.余弦定理(1)一、問題提出?在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對(duì)角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對(duì)邊呢?已知三邊,又怎么求出它的三個(gè)角呢?二、分析理解22222cos2cos2))((cAbcbABAABA
2025-11-08 23:32
【總結(jié)】§.余弦定理(2)知識(shí)改變命運(yùn),勤奮成就未來.三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。Abccbacos2222???Baccabcos2222???Cabbaccos2222???余弦定理22222
2025-11-09 08:48
【總結(jié)】正弦定理(2)【學(xué)習(xí)目標(biāo)】.,判斷三角形時(shí)解的個(gè)數(shù)..【重點(diǎn)難點(diǎn)】重點(diǎn):正弦定理的應(yīng)用.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過程】一、自主學(xué)習(xí):任務(wù)1:正弦定理:_______________________.任務(wù)2:正弦定理的變形公式:_____________________
2024-12-09 03:49
【總結(jié)】余弦定理復(fù)習(xí)回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其它的邊和角).第二種情況若知道的是大邊的對(duì)角,只有唯一的一組解;若給出的是小邊的對(duì)角,則結(jié)
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時(shí) 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會(huì)向量的工具性; 3.能初步運(yùn)用余弦定理解斜三角形....
2025-10-17 01:32
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡單的實(shí)際問題轉(zhuǎn)化為...
2025-10-19 16:14
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)3余弦定理新人教版必修51.在△ABC中,sin2A=sin2B+sinBsinC+sin2C,則A等于()A.30°B.60°C.120°D.150°答案C解析由正弦定理,得a2=b2+bc+
2024-11-28 00:25
【總結(jié)】正、余弦定理在實(shí)際中的應(yīng)用A組基礎(chǔ)鞏固1.如圖,在一幢20m高的樓頂測得對(duì)面一塔頂部的仰角為60°,塔基的俯角為45°,則這座塔的高度是()A.20??????1+33mB.20(1+3)mC.10(6+2)mD.20(6+2)m解析:如圖,過點(diǎn)A
2024-12-08 20:24
【總結(jié)】BCA創(chuàng)設(shè)情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學(xué)理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學(xué)理論.2cos,2cos,2cos22222
【總結(jié)】余弦定理(一)課時(shí)目標(biāo);.1.余弦定理三角形任何一邊的______等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的______.即a2=________________,b2=________________,c2=________________.2.余弦定理的推論cosA=_
2024-12-05 10:14
【總結(jié)】余弦定理(一)知識(shí)梳理余弦定理:(1)形式一:,,形式二:,,,(角到邊的轉(zhuǎn)換)(2)解決以下兩類問題:1)、已知三邊,求三個(gè)角;(唯一解)2)、已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角;(唯一解)題型一根據(jù)三角形的三邊關(guān)系求角例1.已知△ABC中,sinA∶sinB∶sinC=(+1)∶(-1)∶,求最大角.解:∵===k∴sinA∶sinB
2025-06-08 00:36
【總結(jié)】12直角三角形中的邊角關(guān)系:CBAabc1、角的關(guān)系:A+B+C=180°A+B=C=90°2、邊的關(guān)系:a2+b2=c23、邊角關(guān)系:sinA=—=cosBsinB=—=cosAacbc復(fù)習(xí)3CBAabc
2025-05-07 12:06