freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)北師大版選修2-2第一章推理與證明綜合測試(編輯修改稿)

2025-01-10 06:26 本頁面
 

【文章內(nèi)容簡介】 N FE)( 12MN FL)= S△ MNE S△ MNL,同理 S2△ OML= S△ MLE S△ MNL, S2△ ONL= S△ NLE S△ MNL, ∴ S2△ OMN+ S2△ OML+ S2△ ONL= (S△ MNE+ S△ MLE+ S△ NLE) S△ MNL= S2△ MNL,即 S21+ S22+S23= S2. 12. f(n)= 1+ 12+ 13+ ? + 1n(n∈ N*),經(jīng)計算得 f(2)= 32, f(4)> 2, f(8)> 52, f(16)> 3,f(32)> :當(dāng) n≥2 時,有 ____________. [答案 ] f(2n)> n+ 22 [解析 ] 由前幾項 的規(guī)律可得答案. y= loga(x+ 3)- 1(a0 且 a≠1) 的圖像恒過定點(diǎn) A,若點(diǎn) A 在直線 mx+ ny+ 1= 0上,其中 mn0,則 1m+ 2n的最小值為 ________. [答案 ] 8 [解析 ] y= loga(x+ 3)- 1(a0且 a≠1) 的圖像恒過定點(diǎn) A(- 2,- 1). 又 ∵ 點(diǎn) A在直線 mx+ ny+ 1= 0上, ∴ 2m+ n= 1. 又 ∵ mn0, ∴ m0, n0. ∴ 2m+ n= 1≥2 2mn,當(dāng)且僅當(dāng) 2m= n= 12, 即 m= 14, n= 12時取等號, ∴ mn≤ 18.∴ 1m+ 2n= 2m+ nmn = 1mn≥8. 14.若數(shù)列 {an}中, a1= 1, a2= 3+ 5, a3= 7+ 9+ 11, a4= 13+ 15+ 17+ 19, ? ,則 a10= ________. [答案 ] 1 000 [解析 ] 前 10 項共使用了 1+ 2+ 3+ 4+ ? + 10= 55 個奇數(shù), a10為由第 46 個到第 55個奇數(shù)的和,即 a10= (246 - 1)+ (247 - 1)+ ? + (255 - 1)= +2 = 1 000. 15. (2021 陜西文, 14)已知 f(x)= x1+ x, x≥0 ,若 f1(x)= f(x), fn+ 1(x)= f(fn(x)),n∈ N+ , 則 f2021(x)的表達(dá)式為 ________. [答案 ] x1+ 2021x [解析 ] f1(x)= f(x)= x1+ x, f2(x)= f(f1(x))=x1+ x1+ x1+ x= 11+ 2x, f3(x)= f(f2(x))=x1+ 21+ x1+ 2x= x1+ 3x, ? , f2021(x)= x1+ ,找出解析式. 三、解答題 (本大題共 6小題,共 75分,前 4題每題 12 分, 20 題 13分, 21題 14分 ) 16.已知 a0, b0,求證: ab+ ba≥ a+ b. [證明 ] 證法一: (綜合法 ) ∵ a0, b0, ∴ ab+ b≥2 a,當(dāng)且僅當(dāng) a= b時取等號,同理: ba+ a≥2 b,當(dāng)且僅當(dāng) a= b時取等號. ∴ ab+ b+ ba+ a≥2 a+ 2 b, 即 ab+ ba≥ a+ b. 證法二: (分析法 ) 要證 ab+ ba≥ a+ b, 只需證: a a+ b b≥ a b+ b a, 只需證: a a+ b b- a b- b a≥0 , 而 a( a- b)- b( a- b)= ( a+ b)( a- b)2≥0 , 當(dāng)且僅當(dāng) a= b時取等號, 所以 ab+ ba≥ a+ b. 證法三: (反證法 ) 假設(shè)當(dāng) a0, b0時, ab+ ba a+ b. 由 ab+ ba a+ b,得 ab+ ba- a- b0, 即 a a+ b b- a b- b aa b = a a- b - b a- ba b = a+ b a- b2a b 0, 當(dāng) a0, b0時,顯然不成立,
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1