【總結(jié)】等比數(shù)列的概念一.填空題(1).111,,369(2).lg3,lg9,lg27(3).6,8,10(4).3,33,9???na中,32a?,864a?,那么它的公比q???na是等比數(shù)列,na0,又知
2024-11-15 17:58
【總結(jié)】數(shù)列第一章§3等比數(shù)列第一章第4課時(shí)等比數(shù)列的綜合應(yīng)用課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)如今手機(jī)越來越普遍,大街小巷都可看到手機(jī)的風(fēng)采,用手機(jī)發(fā)送信息傳達(dá)情誼也成為年輕人的時(shí)尚.一條溫馨的信息會(huì)帶給我們無窮的溫
2024-11-17 03:39
【總結(jié)】§等比數(shù)列2.等比數(shù)列自主學(xué)習(xí)知識(shí)梳理1.如果一個(gè)數(shù)列從第________項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的________都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的________,通常用字母q表示(q≠0).2.等比數(shù)列的通項(xiàng)公式:____________.3.等
2024-11-19 23:20
【總結(jié)】第9課時(shí):§等比數(shù)列(3)【三維目標(biāo)】:一、知識(shí)與技能1掌握“錯(cuò)位相減”的方法推導(dǎo)等比數(shù)列前項(xiàng)和公式;,并能運(yùn)用公式解決簡(jiǎn)單的實(shí)際問題;二、過程與方法,提高學(xué)生的建模意識(shí)及探究問題、分析與解決問題的能力,體會(huì)公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).“錯(cuò)位相減法”這種算法中,體會(huì)“消除差
2025-06-07 23:07
【總結(jié)】國(guó)際象棋起源于印度,關(guān)于國(guó)際象棋有這樣一個(gè)傳說,國(guó)王要獎(jiǎng)勵(lì)國(guó)際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請(qǐng)?jiān)谄灞P上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止?!眹?guó)王慷慨地答應(yīng)了他。你認(rèn)為國(guó)王有能力滿足上述要求嗎?左
2024-11-18 08:48
【總結(jié)】第一章數(shù)列數(shù)列的概念課時(shí)目標(biāo);,并會(huì)用通項(xiàng)公式寫出數(shù)列的任意一項(xiàng);,會(huì)根據(jù)其前n項(xiàng)寫出它的通項(xiàng)公式.1.一般地,按一定________排列的一列數(shù)叫作數(shù)列,數(shù)列中的每一個(gè)數(shù)叫作這個(gè)數(shù)列的項(xiàng).?dāng)?shù)列一般形式可以寫成a1,a2,a3,?,an,?簡(jiǎn)記為數(shù)列{an},其中數(shù)列的第1項(xiàng)a1也稱首項(xiàng)
2024-12-05 06:35
【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)課時(shí)目標(biāo)n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決一些簡(jiǎn)單問題.1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)
2024-12-05 10:13
【總結(jié)】數(shù)列第一章§3等比數(shù)列第一章第3課時(shí)等比數(shù)列的前n項(xiàng)和課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請(qǐng)?jiān)谄灞P的第1個(gè)格子里放上
【總結(jié)】等差數(shù)列(二)課時(shí)目標(biāo)..1.等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d,當(dāng)d=0時(shí),an是關(guān)于n的常函數(shù);當(dāng)d≠0時(shí),an是關(guān)于n的一次函數(shù);點(diǎn)(n,an)分布在以____為斜率的直線上,是這條直線上的一列孤立的點(diǎn).2.已知在公差為d的等差數(shù)列{an}中的第m項(xiàng)am和第n項(xiàng)a
2024-12-05 01:50
【總結(jié)】A等比數(shù)列等比數(shù)列×國(guó)際象棋起源于印度,關(guān)于國(guó)際象棋有這樣一個(gè)傳說,國(guó)王要獎(jiǎng)勵(lì)國(guó)際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請(qǐng)?jiān)谄灞P上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止?!眹?guó)王慷慨地答應(yīng)了他。
2025-08-05 19:27
【總結(jié)】數(shù)列第一章§3等比數(shù)列第一章第1課時(shí)等比數(shù)列的概念及通項(xiàng)公式課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)從1979年至1999年在我國(guó)累計(jì)推廣種植雜交水稻35億多畝,增產(chǎn)稻谷3500億公斤.年增稻谷
【總結(jié)】談一類遞推數(shù)列求通項(xiàng)公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項(xiàng)的問題.它的基本形式是:已知1a及遞推關(guān)系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結(jié)合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-08 20:21
【總結(jié)】數(shù)列的函數(shù)特性課時(shí)目標(biāo),明確遞推公式與通項(xiàng)公式的異同;的遞推公式寫出數(shù)列的前幾項(xiàng);,能用函數(shù)的觀點(diǎn)研究數(shù)列.1.如果數(shù)列{an}的第1項(xiàng)或前幾項(xiàng)已知,并且數(shù)列{an}的任一項(xiàng)an與它的前一項(xiàng)an-1(或前幾項(xiàng))間的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)式子就叫做這個(gè)數(shù)列的遞推公式.2.?dāng)?shù)列可以看作是一
2024-12-05 06:39
【總結(jié)】第2課時(shí)等比數(shù)列的性質(zhì)知能目標(biāo)解讀,了解等比數(shù)列的性質(zhì)和由來...重點(diǎn)難點(diǎn)點(diǎn)撥重點(diǎn):等比數(shù)列性質(zhì)的運(yùn)用.難點(diǎn):等比數(shù)列與等差數(shù)列的綜合應(yīng)用.學(xué)習(xí)方法指導(dǎo),我們隨意取出連續(xù)三項(xiàng)及以上的數(shù),把它們重新依次看成一個(gè)新的數(shù)列,則此數(shù)列仍為等比數(shù)列,這是因?yàn)殡S意取出連續(xù)三項(xiàng)及以上的數(shù),則以取得的第一個(gè)數(shù)為首項(xiàng),且
2024-11-19 20:40
【總結(jié)】課題:等比數(shù)列的概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】理解等比數(shù)列的概念;體會(huì)等比數(shù)列是用來刻畫一類離散現(xiàn)象的重要數(shù)學(xué)模型?!菊n前預(yù)習(xí)】1.觀察下列數(shù)列有何特點(diǎn)?(1)1,2,4,8,…(2)10,2110?,