freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

淺談高中數(shù)學(xué)教學(xué)中數(shù)學(xué)思想方法的滲透最終定稿(編輯修改稿)

2024-10-17 18:02 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 。究其原因就在于教師在教學(xué)中僅僅是就題論題,殊不知授之以“漁”比授之以“魚”更為重要。因此,在數(shù)學(xué)問題的探索的教學(xué)中重要的是讓學(xué)生真正領(lǐng)悟隱含于數(shù)學(xué)問題探索中的數(shù)學(xué)思想方法。使學(xué)生從中掌握關(guān)于數(shù)學(xué)思想方法方面的知識(shí),并使這種“知識(shí)”消化吸收成具有“個(gè)性”的數(shù)學(xué)思想。逐步形成用數(shù)學(xué)思想方法指導(dǎo)思維活動(dòng),這樣在遇到同類問題時(shí)才能胸有成竹,從容對(duì)待。比如:每節(jié)課我基本都有變式,尤其是幾何課,在講三角形全等復(fù)習(xí)課時(shí),通過一個(gè)例題作適當(dāng)?shù)淖兪?,用所有的判定方法,并且做題技巧上基本相同,讓學(xué)生通過歸納發(fā)現(xiàn)數(shù)學(xué)的奧妙。再如:直線y=2x―1與y=m―x的交點(diǎn)在第三象限,求m的取值范圍。方法1:用m表示交點(diǎn)坐標(biāo),然后用不等式求解;方法2:利用數(shù)形結(jié)合的思想在坐標(biāo)系中畫出圖象,根據(jù)圖象作答。顯然上述的問題解決過程中,學(xué)生通過比較不同的方法,體會(huì)到了數(shù)學(xué)思想在解題中的重要作用,激發(fā)學(xué)生的求知興趣,從而加強(qiáng)了對(duì)數(shù)學(xué)思想的認(rèn)識(shí)。四、及時(shí)總結(jié)歸納概括滲透數(shù)學(xué)思想方法數(shù)學(xué)思想方法貫穿在整個(gè)中學(xué)數(shù)學(xué)教材的知識(shí)點(diǎn)中,以內(nèi)隱的方式溶于數(shù)學(xué)知識(shí)體系。要使學(xué)生把這種思想內(nèi)化成自己的觀點(diǎn),應(yīng)用它去解決問題,就要把各種知識(shí)所表現(xiàn)出來的數(shù)學(xué)思想適時(shí)作出歸納概括。概括數(shù)學(xué)思想方法要納入教學(xué)計(jì)劃,要有目的、有步驟地引導(dǎo)參與數(shù)學(xué)思想的提煉概括過程,特別是章節(jié)復(fù)習(xí)時(shí)在對(duì)知識(shí)復(fù)習(xí)的同時(shí),將統(tǒng)領(lǐng)知識(shí)的數(shù)學(xué)思想方法概括出來,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)思想的應(yīng)用意識(shí),從而有利于學(xué)生更透徹地理解所學(xué)的知識(shí),提高獨(dú)立分析、解決問題的能力。初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法許多,但最基本的數(shù)學(xué)思想方法是數(shù)形結(jié)合的思想,分類討論思想、轉(zhuǎn)化思想、函數(shù)的思想,突出這些基本思想方法,就相當(dāng)于抓住了中學(xué)數(shù)學(xué)知識(shí)的精髓。數(shù)形結(jié)合的思想數(shù)形結(jié)合思想是指看到圖形的一些特征可以想到數(shù)學(xué)式子中相應(yīng)的反映,是看到數(shù)學(xué)式子的特征就能聯(lián)想到在圖形上相應(yīng)的幾何表現(xiàn)。如教材引入數(shù)軸后,就為數(shù)形結(jié)合思想奠定了基礎(chǔ)。如有理數(shù)的大小比較,相反數(shù)和絕對(duì)位的幾何意義,列方程解應(yīng)用題的畫圖分析等,這種抽象與形象的結(jié)合,能使學(xué)生的思維得到訓(xùn)練。數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡(jiǎn)捷。所謂數(shù)形結(jié)合,就是根據(jù)數(shù)與形之間的對(duì)應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的思想,實(shí)現(xiàn)數(shù)形結(jié)合,常與以下內(nèi)容有關(guān):(1)實(shí)數(shù)與數(shù)軸上的點(diǎn)的對(duì)應(yīng)關(guān)系;(2)函數(shù)與圖象的對(duì)應(yīng)關(guān)系;(3)曲線與方程的對(duì)應(yīng)關(guān)系;(4)以幾何元素和幾何條件為背景建立起來的概念,如復(fù)數(shù)、三角函數(shù)等;(5)所給的等式或代數(shù)式的結(jié)構(gòu)含有明顯的幾何意義。如等式。例如:有一十字路口,甲從路口出發(fā)向南直行,乙從路口以西1500米處向東直行,已知甲、乙同時(shí)出發(fā),10分鐘后兩人第一次距十字路口的距離相等,40分鐘后兩人再次距十字路口距離相等,求甲、乙兩人的速度。要求學(xué)生先畫出“十字”圖,分析表示出兩人在10分鐘、40分鐘時(shí)的位置,由圖分析從而列出方程組。分類討論的思想“分類”是生活中普遍存在著的,分類思想是自然科學(xué)乃至社會(huì)科學(xué)研究中的基本邏輯方法,也是研究數(shù)學(xué)問題的重要思想方法,它始終貫穿于整個(gè)數(shù)學(xué)教學(xué)中。從具體內(nèi)容上看,初中數(shù)學(xué)中實(shí)數(shù)的分類、三角形的分類、方程的分類等等,在教學(xué)中就需要啟發(fā)學(xué)生按不同的情況去對(duì)同一對(duì)象進(jìn)行分類,幫助他們掌握好分類的方法原則,形成分類的思想,從具體的教法上看,如對(duì)初一“有理數(shù)的加法”教學(xué)中,引導(dǎo)學(xué)生觀察、思考、探究,將有理數(shù)的加法分為三類進(jìn)行研究,正確歸納出有理數(shù)加法法則,這樣學(xué)生不僅掌握了具體的“法則”,而且對(duì)“分類”有了深刻的認(rèn)識(shí),那么在較為復(fù)雜的情況下,利用掌握好的分類的思想方法,正確地確定標(biāo)準(zhǔn),不重不漏地進(jìn)行分類,從而使看問題更加全面。例如:甲、乙兩人騎自行車,同時(shí)從相距75km的兩地相向而行,甲的速度為15km/n,乙的速度為10km/n,經(jīng)過多少小時(shí)甲、乙兩人相距25km?經(jīng)學(xué)生思考分析后,甲、乙兩人相遇前后都會(huì)相距25km,得出兩種情況解答就不會(huì)出錯(cuò),從而體現(xiàn)分類討論的思想。再如:在同一圖形內(nèi),畫出∠AOB=60176。,∠COB=50176。,OD是∠AOB的平分線,OE是∠COB的平分線,并求出∠DOE的度數(shù)。分∠COB在∠AOB的內(nèi)部和外部?jī)煞N情形。轉(zhuǎn)化思想解決某些數(shù)學(xué)問題時(shí),如果直接求解較為困難,可通過觀察、分析、類比、聯(lián)想等思維過程,運(yùn)用恰當(dāng)?shù)臄?shù)學(xué)方法進(jìn)行變換,將問題轉(zhuǎn)化為一個(gè)新問題(相對(duì)來說較為熟悉的問題),通過新問題的求解,、達(dá)到解決原問題的目的。這一思想方法我們稱之為“轉(zhuǎn)化的思想方法”。轉(zhuǎn)化是將數(shù)學(xué)命題由一種形式向另一種形式的轉(zhuǎn)換過程。轉(zhuǎn)化思想是中學(xué)數(shù)學(xué)最基本的思想方法。轉(zhuǎn)化思想是指根據(jù)已有知識(shí)、經(jīng)驗(yàn),通過觀察、聯(lián)想、類比等手段,把問題進(jìn)行變換,轉(zhuǎn)化為已經(jīng)解決或容易解決的問題。如二元一次方程組,三元一次方程組的解決實(shí)質(zhì)就是化為解已經(jīng)學(xué)過的一元一次方程。如果把若干個(gè)人之間握手總次數(shù)(單握)稱為“握手問題”,那么像無(wú)三點(diǎn)共線的n個(gè)點(diǎn)之間連線;共端點(diǎn)射線夾角(小于平角的角)個(gè)數(shù);一條線段上有若干個(gè)點(diǎn)形成的線段的條數(shù);足球隊(duì)之間單個(gè)循環(huán)比賽場(chǎng)次都可轉(zhuǎn)化為“握手問題”。例如:平方差公式的教學(xué),其內(nèi)容本身并不難,但這是學(xué)生第一次學(xué)習(xí)公式,學(xué)生不是做不到,而是想不到。要希望學(xué)生能想得到,就要特別注意要讓學(xué)生經(jīng)歷歸納公式的形成過程,也就是要在教學(xué)中潛移默化的教給學(xué)生一些基本套路。這個(gè)基本套路其實(shí)和概念教學(xué)是類似的,這個(gè)基本套路就是變形(如何變?選擇未知數(shù)系較簡(jiǎn)單變形),代入(如何代?代哪個(gè)方程?代入另一個(gè)方程)在這個(gè)過程中,其核心還是歸納。歸納是代數(shù)教學(xué)的核心,歸納地想、歸納地發(fā)現(xiàn)規(guī)律作得多了,思想也就體現(xiàn)出來了。函數(shù)的思想方法辯證唯物主義認(rèn)為,世界上一切事物都是處在運(yùn)動(dòng)、變化和發(fā)展的過程中,這就要求我們教學(xué)中重視函數(shù)的思想方法的滲透。例如:求代數(shù)式的值的教學(xué)時(shí),通過強(qiáng)調(diào)解題的第一步“當(dāng)??時(shí)”的依據(jù),滲透函數(shù)的思想方法——字母每取一個(gè)值,代數(shù)式就有唯一確定的值。通過引導(dǎo)學(xué)生對(duì)以上問題的討論,將靜態(tài)的知識(shí)模式演變?yōu)閯?dòng)態(tài)的討論,這樣實(shí)際上就賦予了函數(shù)的形式,在學(xué)生的頭腦中就形成了以運(yùn)動(dòng)的觀點(diǎn)去領(lǐng)會(huì),這就是發(fā)展函數(shù)思想的重要途徑。當(dāng)然,要使學(xué)生真正具備了有個(gè)性化的數(shù)學(xué)思想方法,并不是通過幾堂課就能達(dá)到,但是只要我們?cè)诮虒W(xué)中大膽實(shí)踐,持之以恒,寓數(shù)學(xué)思想方法于平時(shí)的教學(xué)中,學(xué)生對(duì)數(shù)學(xué)思想方法的認(rèn)識(shí)就一定會(huì)日趨成熟。參賽單位:谷城縣石花鎮(zhèn)一中 執(zhí)筆:李世秀 電話:1367212936 參賽時(shí)間:2010年第四篇:“植樹問題”教學(xué)中數(shù)學(xué)思想方法的滲透“植樹問題”教學(xué)中數(shù)學(xué)思想方法的滲透湖州市南潯區(qū)三長(zhǎng)學(xué)校李富強(qiáng)【摘要】:在植樹問題的教學(xué)環(huán)節(jié)中,如何體現(xiàn)數(shù)學(xué)思想方法的有效滲透,使植樹問題與數(shù)學(xué)思想方法并重?本文擬以《植樹問題》的教學(xué)案例,闡述在課堂教學(xué)中滲透“對(duì)應(yīng)”、“數(shù)形結(jié)合”、“化歸”、“轉(zhuǎn)化”等數(shù)學(xué)思想方法的一些做法和體會(huì)?!娟P(guān)鍵詞】:植樹問題數(shù)學(xué)思想“植樹問題”是人教版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)“數(shù)學(xué)廣角”中的教學(xué)內(nèi)容,其中“理解不封閉直線上(兩端都種)植樹棵數(shù)與間隔
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1