【總結】2.等差數(shù)列的前n項和1.(1)對于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-05 10:14
【總結】課題:等差數(shù)列前n項和公式(1)班級:姓名:學號:第學習小組【學習目標】掌握等差數(shù)列的前n項和的公式及推導該公式的數(shù)學思想方法,能運用等差數(shù)列的前n項和的公式求等差數(shù)列的前n項和.【課前預習】1.(1)你如何快速求出?100321??????
2024-11-20 01:05
【總結】第一頁,編輯于星期六:點三十四分。,2.3等差數(shù)列的前n項和第二課時等差數(shù)列前n項和的應用,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第...
2024-10-22 18:53
【總結】等差數(shù)列的前n項和(二)課時目標n項和的性質,并能靈活運用.n項和的最值問題.an與Sn的關系,能根據(jù)Sn求an.1.前n項和Sn與an之間的關系對任意數(shù)列{an},Sn是前n項和,Sn與an的關系可以表示為an=?????n=,n2.
2024-12-08 13:12
【總結】數(shù)列的概念與簡單表示法典型例題例1、求下列數(shù)列的一個通項公式:⑴,,33,17,9,5,3?⑵,,0,71,0,51,0,31,0,1???⑶,,9910,638,356,154,32?⑷,,21,15,10,6,3,1?【解析】⑴聯(lián)想數(shù)列,,32,16,8,4,2?即數(shù)列??n2,可得數(shù)列的通項公式
2024-12-03 03:12
【總結】等差數(shù)列的前n項和(2)教學目標:1.進一步熟練掌握等差數(shù)列的通項公式和前n項和公式.2.了解等差數(shù)列的一些性質,并會用它們解決一些相關問題.教學重點:熟練掌握等差數(shù)列的求和公式.教學難點:靈活應用求和公式解決問題.教學方法:啟發(fā)、討論、引導式.教學過程:一、問題情境
【總結】2.等差數(shù)列的前n項和學習目標預習導學典例精析欄目鏈接情景導入數(shù)學史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱為歷史上最偉大的三位數(shù)學家之一,他就是18世紀德國著名的數(shù)學家——高斯.高斯在上小學時,就能很快地算出1+2+3+…+1
2024-11-17 23:16
【總結】等差數(shù)列的前n項和A組基礎鞏固1.在等差數(shù)列{an}中,S10=120,則a2+a9=()A.12B.24C.36D.48解析:S10=a1+a102=5(a2+a9)=120.∴a2+a9=24.答案:B2.設數(shù)列{an}是等差數(shù)列,且a2=-6,a8=6,Sn是
2024-12-08 20:22
【總結】由此題,如何通過數(shù)列前n項和來求數(shù)列通項公式???首項與公差各是多少?數(shù)列嗎?如果是,它的并判斷這個數(shù)列是等差,求這個數(shù)列的通項公式項和為的前:已知數(shù)列例,1212nnSnann??)1(?????????????n1na2a1a1nSna1na2a1anS??與解:根據(jù)212122122)]1()1[()(1???????
2024-11-10 00:24
【總結】等差數(shù)列的前n項和一、教材分析1.教學內容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時的內容。主要研究等差數(shù)列的前n項和公式的推導及其簡單應用。2.地位與作用本節(jié)課是前面所學知識的延續(xù)和深化,又是后面學習“等比數(shù)列及其前n項和”的基礎和前奏。學好了本節(jié)課的內容,既能加深對數(shù)列有關概念的理解,又能為后面學好等比數(shù)列及數(shù)列求和
【總結】等差數(shù)列的前n項和理解教材新知突破??碱}型跨越高分障礙第二章題型一題型二應用落實體驗隨堂即時演練課時達標檢測題型三知識點一知識點二題型四[導入新知]數(shù)列的前n項和對于數(shù)列{an},一般地稱
2024-11-17 17:05
【總結】等差數(shù)列的前n項和第二課時等差數(shù)列前n項和的應用課前預習·巧設計名師課堂·一點通創(chuàng)新演練·大沖關第二章數(shù)列考點一考點二課堂強化課下檢測考點三
2025-01-06 16:35
【總結】多媒體教學課件引入新課1新課2例題練習結束封面復習數(shù)列{an}前項n和的定義:叫做數(shù)列的前n項和。??naSn=a1+a2+a3+…+an-2+an-1+an?等差數(shù)列:?公差:?通項公式:?
2024-11-11 21:08
【總結】欄目導航課前預習課堂探究點擊進入課后作業(yè)
2025-08-05 11:00