【總結(jié)】2.2復數(shù)的乘法與除法雙基達標?限時20分鐘?1.復數(shù)i2+i3+i41-i等于().A.-12-12iB.-12+12i-12i+12i解析i2+i3+i41-i=-1-i+11-i=-i1-i=(
2024-12-03 00:13
【總結(jié)】§2微積分基本定理雙基達標?限時20分鐘?1.(1+cosx)dx等于().A.πB.2C.π-2D.π+2解析∵(x+sinx)′=1+cosx,=π2+sinπ2-??????-π2+sin(-π2)
2024-11-30 11:35
【總結(jié)】§3定積分的簡單應用平面圖形的面積雙基達標?限時20分鐘?1.曲線y=x3與直線y=x所圍成圖形的面積等于().A.??-11(x-x3)dxB.??-11(x3-x)dxC.2??01(x-x3)dxD.2??-10(x-x3)dx答案
【總結(jié)】第5課時導數(shù)的綜合應用、極值、最值等..函數(shù)與導數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)思想貫穿中學數(shù)學全過程.導數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機地聯(lián)系在一起,在能力立意的命題思想指導下,與導數(shù)相關(guān)的問題已成為高考數(shù)學命題的必考考點之一.函數(shù)與方
2024-12-05 06:30
【總結(jié)】第四章定積分§1定積分的概念定積分的背景——面積和路程問題雙基達標?限時20分鐘?1.物體運動的速度和時間的函數(shù)關(guān)系式為v(t)=2t,估計在區(qū)間[2,8]內(nèi)物體運動的路程時,把區(qū)間6等分,則過剩估計值為().A.54B.60C.57D.66答案D2
【總結(jié)】-*-§2導數(shù)在實際問題中的應用首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.利用實際問題進一步鞏固和加強對導數(shù)概念的理解;理解瞬時速度、邊際成本等概念,并能利用導數(shù)求解有關(guān)實際問題.2.會用
2024-11-16 23:22
【總結(jié)】§5簡單復合函數(shù)的求導法則雙基達標?限時20分鐘?1.已知f(x)=ln(2x),則f′(x)().A.12xC.1x·ln22x解析f(x)=ln(2x)由f(u)=lnu和u=2x復合而成.答案B2.設f(x)=x3,則f(a-bx)的
2024-12-03 00:14
【總結(jié)】第二章變化率與導數(shù)§1變化的快慢與變化率雙基達標?限時20分鐘?1.已知函數(shù)y=2x,當x由2變?yōu)闀r,函數(shù)的增量Δy=().A.1C.2解析Δy=-22=13.答案B2.若函數(shù)f(x)=2x2的圖像上點P(1,2)及鄰近點Q(1+Δx,2+
【總結(jié)】雙基達標?限時20分鐘?1.直線y=x+2,x=0,x=1以及x軸圍成的平面圖形繞x軸旋轉(zhuǎn)一周,所得圓臺的體積為().B.6π答案C2.直線y=x,x=1以及x軸圍成的平面圖形繞x軸旋轉(zhuǎn)一周,所得圓錐體的體積為().A.π
【總結(jié)】【成才之路】2021-2021學年高中數(shù)學第2章3計算導數(shù)課時作業(yè)北師大版選修2-2一、選擇題1.已知f(x)=x2,則f′(3)等于()A.0B.2xC.6D.9[答案]C[解析]f′(x)=2x?f′(3)=6.2.(2021·泰安模擬
2024-12-05 01:48
【總結(jié)】【成才之路】2021-2021學年高中數(shù)學第2章2導數(shù)的概念及其幾何意義課時作業(yè)北師大版選修2-2一、選擇題1.設函數(shù)f(x)在x=x0處可導,則當h→0時,以下有關(guān)fx0+h-fx0h的值的說法中正確的是()A.與x0,h都有關(guān)B.僅與x0有關(guān)而與h無關(guān)C.僅與h有關(guān)而與x0
2024-12-05 06:27
【總結(jié)】導數(shù)在實際問題中的應用目標認知學習目標:1.會從幾何直觀了解函數(shù)單調(diào)性和導數(shù)的關(guān)系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次.2.了解函數(shù)在某點取得極值的必要條件(導數(shù)在極值點兩端異號)和充分條件();會用導數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次.3.會求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【總結(jié)】北師大版高中數(shù)學選修2-2第三章《導數(shù)應用》一、教學目標::(1)了解實際背景中導數(shù)的含義,體會導數(shù)的思想及其內(nèi)涵在實際問題中的應用;(2)理解世界問題中的具體情境,了解解題思路和方法。2.過程與方法:通過實際問題,讓學生進一步理解導數(shù)的思想,感知導數(shù)的含義.3.情感.態(tài)度與價值觀:使學生感受到學習導數(shù)的實際背景,增強學習從生
2025-07-18 13:16
【總結(jié)】圖1導數(shù)在實際生活的實際應用同步練習1.一個膨脹中的球形氣球,其體積的膨脹章恒為/s,則當其半徑增至m時,半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個矩形面積和的最小值為.3.如圖1,將邊
2024-12-05 09:29
【總結(jié)】第1課時導數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導數(shù)的關(guān)系...對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
2024-11-19 23:14