【摘要】§2導(dǎo)數(shù)的概念及其幾何意義導(dǎo)數(shù)的概念雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)f(x)在x0處可導(dǎo),則limh→0f?x0+h?-f?x0?h().A.與x0、h都有關(guān)B.僅與x0有關(guān),而與h無關(guān)C.僅與h有關(guān),而與x0無關(guān)D.與x0、h均無關(guān)答案B
2024-12-15 00:14
【摘要】§導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用學(xué)習(xí)目標(biāo)思維脈絡(luò)1.通過解決利潤(rùn)最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在實(shí)際問題中的作用.2.會(huì)用導(dǎo)數(shù)求閉區(qū)間上不超過三次的多項(xiàng)式函數(shù)的最大值、最小值.3.體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.121.生活中的變化率問題在
2024-11-30 00:49
【摘要】實(shí)際問題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運(yùn)用導(dǎo)數(shù)方法求解有關(guān)利潤(rùn)最大,用料最省,效率最高等最優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際生活問題中的作用。三、重點(diǎn)難點(diǎn)用導(dǎo)數(shù)方法解決實(shí)際生活中的問題四、要點(diǎn)梳理解應(yīng)用題的基本程序是:讀題建模求解
2024-12-01 23:16
【摘要】第三章導(dǎo)數(shù)應(yīng)用§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)f(x)=2x-sinx在(-∞,+∞)上().A.增函數(shù)B.減函數(shù)C.有最大值D.有最小值解析∵f′(x)=2-cosx0,∴f(x)是
【摘要】§4導(dǎo)數(shù)的四則運(yùn)算法則雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列式子中正確的為().①(2x+1)′=2;②(ln2)′=12;③[f(x0)]′=f′(x0);④[f(x0)]′=0.A.①③B.②③C.①④D.②④解析②中l(wèi)n2是常數(shù)
【摘要】定積分雙基達(dá)標(biāo)?限時(shí)20分鐘?1.S1=??012xdx,S2=??013xdx的大小關(guān)系是().A.S1=S2B.S21=S2C.S1>S2D.S1<S2解析??012xdx表示的是由曲線y=2x,x=0,x=1及x軸所圍成的圖形面積,而??0
2024-12-15 00:13
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列說法正確的是().A.若f(x)≥f(x0),則f(x0)為f(x)的極小值B.若f(x)≤f(x0),是f(x0)為f(x)的極大值C.若f(x0)為f(x)的極大值,則f(x)≤f(x0)D.以上都不對(duì)答案D2.已知函數(shù)f(x)在(a,b)上可導(dǎo)
【摘要】§2導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用課時(shí)目標(biāo)..最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過三次).1.中學(xué)物理中,速度可以看作______________的導(dǎo)數(shù),線密度是__________________的導(dǎo)數(shù),功率是________________的導(dǎo)數(shù).2.函數(shù)的最大值點(diǎn):函數(shù)y=f(x)在區(qū)間上的最大值點(diǎn)x0
2024-12-17 01:55
【摘要】第一章推理與證明§1歸納與類比雙基達(dá)標(biāo)?限時(shí)20分鐘?1.把1,3,6,10,15,21,…這些數(shù)叫作三角形數(shù),如圖所示,則第七個(gè)三角形數(shù)是().A.27B.28C.29D.30解析第一個(gè)三角形數(shù)是1,第二個(gè)三角形數(shù)是1+2=3,第三
2024-12-15 00:15
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列平面圖形中可作為空間平行六面體類比對(duì)象的是().A.三角形B.梯形C.平行四邊形D.矩形答案C2.下面幾種推理是類比推理的是().A.因?yàn)槿切蔚膬?nèi)角和是180°×(3-2),四邊形的內(nèi)角和是180°×(4-
【摘要】復(fù)數(shù)的有關(guān)概念雙基達(dá)標(biāo)?限時(shí)20分鐘?1.若點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)z滿足|z|≤1,則P的軌跡是().A.直線B.線段C.圓D.單位圓以及圓內(nèi)答案D2.如果向量OZ→=0,則下列說法中正確的個(gè)數(shù)是().①點(diǎn)Z在實(shí)軸上;②點(diǎn)Z在虛軸上;③點(diǎn)Z既在實(shí)軸上,又在虛
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.在△ABC中,tanA·tanB>1,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.不確定解析tanA·tanB>1,∴tanA>0,tanB>0,∴A、B為銳角,又tan(A+B)=tan
【摘要】實(shí)際問題中導(dǎo)數(shù)的意義1、實(shí)際問題中的應(yīng)用.在日常生活、生產(chǎn)和科研中,常常會(huì)遇到求函數(shù)的最大(小)值的問題.建立目標(biāo)函數(shù),然后利用導(dǎo)數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標(biāo)函數(shù)時(shí),一定要注意確定函數(shù)的定義域.在實(shí)際問題中,有時(shí)會(huì)遇到函數(shù)在區(qū)間內(nèi)只有一個(gè)點(diǎn)使的情形,如
2024-11-24 01:26
【摘要】第五章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入§1數(shù)系的擴(kuò)充與復(fù)數(shù)的引入數(shù)的概念的擴(kuò)展雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列結(jié)論錯(cuò)誤的是().A.自然數(shù)集是非負(fù)整數(shù)集B.實(shí)數(shù)集與復(fù)數(shù)集的交集是實(shí)數(shù)集C.實(shí)數(shù)集與虛數(shù)集的交集是{0}D.純虛數(shù)集與實(shí)數(shù)集的交集為空集答案C2.(1+3)i的實(shí)部與
【摘要】PK!宻燾?[Content_Types].xml?(?
2024-12-17 06:39