【總結(jié)】第三章導(dǎo)數(shù)應(yīng)用§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性雙基達(dá)標(biāo)?限時20分鐘?1.函數(shù)f(x)=2x-sinx在(-∞,+∞)上().A.增函數(shù)B.減函數(shù)C.有最大值D.有最小值解析∵f′(x)=2-cosx0,∴f(x)是
2024-12-03 00:14
【總結(jié)】雙基達(dá)標(biāo)?限時20分鐘?1.函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f′(x0)的幾何意義是().A.在點(diǎn)x0處的斜率B.在點(diǎn)(x0,f(x0))處切線與x軸所夾銳角的正切值C.曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率D.點(diǎn)(x0,f(x0))與點(diǎn)(0,0)連線的斜率解析由導(dǎo)
【總結(jié)】第二章變化率與導(dǎo)數(shù)§1變化的快慢與變化率雙基達(dá)標(biāo)?限時20分鐘?1.已知函數(shù)y=2x,當(dāng)x由2變?yōu)闀r,函數(shù)的增量Δy=().A.1C.2解析Δy=-22=13.答案B2.若函數(shù)f(x)=2x2的圖像上點(diǎn)P(1,2)及鄰近點(diǎn)Q(1+Δx,2+
【總結(jié)】雙基達(dá)標(biāo)?限時20分鐘?1.直線y=x+2,x=0,x=1以及x軸圍成的平面圖形繞x軸旋轉(zhuǎn)一周,所得圓臺的體積為().B.6π答案C2.直線y=x,x=1以及x軸圍成的平面圖形繞x軸旋轉(zhuǎn)一周,所得圓錐體的體積為().A.π
2024-12-03 00:13
【總結(jié)】§4導(dǎo)數(shù)的四則運(yùn)算法則雙基達(dá)標(biāo)?限時20分鐘?1.下列式子中正確的為().①(2x+1)′=2;②(ln2)′=12;③[f(x0)]′=f′(x0);④[f(x0)]′=0.A.①③B.②③C.①④D.②④解析②中l(wèi)n2是常數(shù)
【總結(jié)】利用導(dǎo)數(shù)我們解決了“已知物體運(yùn)動路程與時間的關(guān)系,求物體運(yùn)動速度”的問題.引入反之,如果已知物體的速度與時間的關(guān)系,如何求其在一定時間內(nèi)經(jīng)過的路程呢?汽車行駛的路程問題:汽車以速度v做勻速直線運(yùn)動時,經(jīng)過時間t所行駛的路程為Svt?.如果汽車作變速直線運(yùn)動,在時刻t的速
2024-11-17 12:01
【總結(jié)】定積分的概念問題提出動的路程,都可以通過“四步曲”解決,這四個步驟是什么?其中哪個步驟是難點(diǎn)?分割→近似代替→求和→取極限.運(yùn)動的路程是兩類不同的問題,但它們有共同的解決途徑,我們可以此為基點(diǎn),構(gòu)建一個新的數(shù)學(xué)理論,使得這些問題歸結(jié)為某個數(shù)學(xué)問題來解決,并應(yīng)用于更多的研究領(lǐng)域
2024-11-17 19:50
【總結(jié)】§學(xué)習(xí)目標(biāo)1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質(zhì)及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無限細(xì)分和無窮累積的思維方法.預(yù)習(xí)與反饋(預(yù)習(xí)教材P42~P47,找出疑惑之處)1.用化歸為計(jì)算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【總結(jié)】第四章定積分§定積分的概念學(xué)習(xí)目標(biāo)思維脈絡(luò)1.了解曲邊梯形的面積求法.2.理解“分割、近似代替、求和、取極限”的數(shù)學(xué)思想.3.掌握定積分的概念,并會用定義求定積分.4.理解定積分的幾何意義和定積分的基本性質(zhì).1231.定積分的
2024-11-18 13:32
【總結(jié)】曲邊梯形的面積與定積分【教學(xué)目標(biāo)】—分割、以直代曲、求和、取極限;了解定積分的概念及幾何意義;;“質(zhì)量互變、對立統(tǒng)一”的觀點(diǎn).【教學(xué)重點(diǎn)】定積分的概念【教學(xué)難點(diǎn)】以曲代直一、課前預(yù)習(xí):閱讀教材36頁—38頁,完成下列問題例1:求曲線2xy?與直線0,1??yx所圍成區(qū)域的面積.(1)分割:將區(qū)間
2024-11-19 10:27
【總結(jié)】1曲邊梯形面積與定積分2::"",特定形式和的極限且都可以歸結(jié)為求一個、取極限得到解決,分割、近似代替、求和四步曲它們都可以通過的過程可以發(fā)現(xiàn)變速直線運(yùn)動路程從曲邊梯形面積以及求????;ξfn1limxΔξflimSin1inn1ii0xΔ???????
2024-11-18 01:21
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第4章2微積分基本定理課時作業(yè)北師大版選修2-2一、選擇題1.????-π2π2(1+cosx)dx等于()A.πB.2C.π-2D.π+2[答案]D[分析]利用微積分基本定理求定積分.
2024-12-05 06:27
【總結(jié)】曲邊梯形面積與定積分:在直角坐標(biāo)系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=by=f(x)baxyOA1A?A1.用
2024-11-17 05:48
【總結(jié)】定積分課時目標(biāo)..分.1.定積分的概念:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)間長度為Δx(Δx=b-an),在每個小區(qū)間上取一點(diǎn),依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
2024-12-05 03:08
【總結(jié)】選修2-2綜合測試時間120分鐘,滿分150分.一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.計(jì)算:1+2i-2=()A.-1-12iB.-1+12iC.1+12iD.1-12i[答案]B[解析]1+2i
2024-12-04 23:43