【總結(jié)】初中數(shù)學(xué)八年級上冊(蘇科版)思考⑴軸對稱與軸對稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對稱與軸對稱圖形的關(guān)系,你認為什么樣的圖形是中心對稱圖形?你對線段有哪些認識?ABADBC你對平行四邊形有哪些認識?把一個平面圖形繞某一點旋轉(zhuǎn)1800,如果它能夠與原來圖形重合,那么這個圖形叫做中心
2024-11-30 03:54
【總結(jié)】第32講┃軸對稱與中心對第32講┃考點聚焦考點聚焦考點1軸對稱與軸對稱圖形軸對稱軸對稱圖形定義把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形____,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸.折疊后重合的點是對應(yīng)點,叫對稱點如果一個圖形沿某一直線對折后
2025-01-15 13:20
【總結(jié)】圖片欣賞:埃舍爾作品觀察:思考:這些圖形有哪些共同的特征?旋轉(zhuǎn)一定的角度可以和自身重合五角星繞著點O按順時針方向旋轉(zhuǎn)72度后與初始五角星重合。正三角形繞著點O順時針旋轉(zhuǎn)120度后與初始正三角形重合觀察:OOOOOO把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始
2025-04-29 12:00
【總結(jié)】第一篇:中心對稱和中心對稱圖形數(shù)學(xué)教案 中心對稱和中心對稱圖形數(shù)學(xué)教案 1.中心對稱 把一個圖形繞著某一點旋轉(zhuǎn),如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱,這個點叫做對稱中心,...
2024-11-15 01:10
【總結(jié)】9激發(fā)興趣,教給方法,培養(yǎng)習(xí)慣,塑造品格樂學(xué)教育學(xué)員個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:韓老師授課時間:年月日(星期)姓名年級性別女教材版本總課時____第___課
2024-07-27 06:35
【總結(jié)】中心對稱與中心對稱圖形(2)班級姓名學(xué)號學(xué)習(xí)目標(biāo)比照軸對稱與軸對稱圖形的關(guān)系,認識中心對稱圖形,知道中心對稱圖形的性質(zhì)學(xué)習(xí)難點⒈中心對稱圖形與軸對稱圖形的區(qū)別;⒉利用中心對稱圖形的有關(guān)概念和基本性質(zhì)解決問題。教學(xué)過程
2024-11-20 00:17
【總結(jié)】中心對稱圖形義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書九年級上冊一教材的地位與作用這一節(jié)課與圖形的三種運動(平移、翻折、旋轉(zhuǎn))之一的“旋轉(zhuǎn)”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生認識圖形的三種基本運動中“旋轉(zhuǎn)”在幾何知識中的重要體現(xiàn),同時也完善了初中部分對“對稱圖形”(軸對稱圖形、中心對稱圖形)的知識講授,
2024-07-27 07:20
【總結(jié)】安義縣中小學(xué)自主學(xué)習(xí)提綱年級:九年級學(xué)科:數(shù)學(xué)學(xué)期:上學(xué)期設(shè)計時間:2020年月日NO課題課型(課時)新授(第2課時)策劃者劉名鋼審核者導(dǎo)學(xué)者學(xué)習(xí)時間學(xué)習(xí)者班級九年級學(xué)習(xí)目標(biāo),建立中心對稱圖形的概念,會判斷一個圖形是不是中心對稱圖形。
2024-11-18 23:13
【總結(jié)】安義縣中小學(xué)自主學(xué)習(xí)提綱年級:九年級學(xué)科:數(shù)學(xué)學(xué)期:上學(xué)期設(shè)計時間:2020年月日NO課題中心對稱課型(課時)新授(第1課時)策劃者劉名鋼審核者導(dǎo)學(xué)者學(xué)習(xí)時間學(xué)習(xí)者班級九年級學(xué)習(xí)目標(biāo)(或中心對稱)的本質(zhì);就是一個圖形繞
2024-11-19 00:43
【總結(jié)】中心對稱圖形(1)觀察下列圖形看看它們有沒有共同的特征?(2)你能將下圖中的“風(fēng)車”繞其上的一點旋轉(zhuǎn)180度,使旋轉(zhuǎn)前后的圖形完全重合嗎?正六邊形呢?A上圖繞中心旋轉(zhuǎn)180度與原圖重合中心對稱圖形的定義?在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形相互重合,那么這個圖形叫做中心對稱圖形。這個點叫做
2024-08-01 03:41
【總結(jié)】中心對稱(第1課時)九年級上冊1、回憶什么是軸對稱?成軸對稱的兩個圖形有什么性質(zhì)??如果一個圖形沿著對折后能與?重合,則稱這兩個圖形關(guān)于這條直線對稱或軸對稱。?成軸對稱的圖形,它們的對應(yīng)點的連線被對稱軸
2024-11-30 14:19
【總結(jié)】一、知識點:1、圖形的旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點旋轉(zhuǎn)一定的角度,這樣的圖形運動稱為圖形的旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,旋轉(zhuǎn)的角度稱為旋轉(zhuǎn)角。旋轉(zhuǎn)前、后的圖形全等。對應(yīng)點到旋轉(zhuǎn)中心的距離相等。每一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等。2、中心對稱:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖
2024-12-08 02:28
【總結(jié)】平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180o,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點在叫做它的對稱中心。中心對稱圖形性質(zhì):對稱中心是對應(yīng)點連線的中點想一想下面哪些圖形是中心對稱圖形?o(2)圓(1)正三角形(4)等腰梯形(3)平行四邊形(1)正三角形(
2024-11-10 05:31
【總結(jié)】初中數(shù)學(xué)八年級上冊(蘇科版)(2)思考⑴軸對稱與軸對稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對稱與軸對稱圖形的關(guān)系,你認為什么樣的圖形是中心對稱圖形?你對線段有哪些認識?AB線段旋轉(zhuǎn)ADBC平旋轉(zhuǎn)你對平行四邊形有哪些認識?把一個平面圖形繞某一點旋轉(zhuǎn)1800,如果它能夠
【總結(jié)】中心對稱與中心對稱圖形教學(xué)設(shè)計第1課時[教學(xué)設(shè)計思路:,設(shè)計為畫出已知圖形繞某一點旋轉(zhuǎn)180度的圖形,這樣處理一方面加強了中心對稱與旋轉(zhuǎn)的聯(lián)系,同時為后面的作圖環(huán)節(jié)打開基礎(chǔ).,先安排了判斷兩個圖形是否成中心對稱,之后是關(guān)于成中心對稱的兩個圖形的性質(zhì)的探究.這樣會導(dǎo)致學(xué)生在判斷兩個圖形是否成中心對稱的這一環(huán)節(jié),無法進行深層次
2024-12-09 08:51