【總結(jié)】計算導數(shù)同步練習一,選擇題:1.曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是()A、5B、25C、35D、02、設(shè)P點是曲線3233???xxy上的任意一點,P點處切線傾斜角為?,則角?的取值范圍是(
2024-12-05 06:39
【總結(jié)】變化的快慢與變化率【例1】已知質(zhì)點M按規(guī)律s=2t2+3作直線運動(位移單位:cm,時間單位:s),當t=2,Δt=,求ts??;(2)當t=2,Δt=,求ts??;(3)求質(zhì)點M在t=2時的瞬時速度【例2】某一物體的運動規(guī)律為s=t3-t2+2t+5(其中s表示位移,t表
2024-11-19 23:16
【總結(jié)】變化的快慢與變化率一、教學目標(1)理解瞬時速度,會運用瞬時速度的定義求物體在某一時刻的瞬時速度(2)理解瞬時變化率概念,實際背景,培養(yǎng)學生解決實際問題的能力二、教學重點、難點重點:瞬時速度,瞬時變化率概念及計算難點:瞬時變化率的實際意義和數(shù)學意義三、教學過程(一)、復習引入1、什么叫做平均變化
【總結(jié)】高考中導數(shù)問題的六大熱點由于導數(shù)其應用的廣泛性,為解決函數(shù)問題提供了一般性的方法及簡捷地解決一些實際問題.因此在高考占有較為重要的地位,其考查重點是導數(shù)判斷或論證單調(diào)性、函數(shù)的極值和最值,利用導數(shù)解決實際問題等方面,下面例析導數(shù)的六大熱點問題,供參考.一、運算問題例1已知函數(shù)22()(1)xbfxx???,求導函數(shù)()fx?.
2024-12-05 06:34
【總結(jié)】雙曲線及其標準方程1、定義:平面內(nèi)與兩個定點F1、F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線,這兩個定點叫做雙曲線的焦點,兩個焦點的距離叫做雙曲線的焦距.2、標準方程:12222??byax(a>0,b>0)或12222??bxay(a>0,b>0)3、a、b、c三者之間的
2024-11-19 23:15
【總結(jié)】用導數(shù)求切線方程的四種類型求曲線的切線方程是導數(shù)的重要應用之一,用導數(shù)求切線方程的關(guān)鍵在于求出切點00()Pxy,及斜率,其求法為:設(shè)00()Pxy,是曲線()yfx?上的一點,則以P的切點的切線方程為:000()()yyfxxx????.若曲線()yfx?在點00(())Pxfx,的切線平行于y軸(即
【總結(jié)】第三章§1理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二1.1歸納推理問題1:我們知道銅、鐵、鋁、金、銀都是金屬,它們有何物理性質(zhì)?提示:都能導電.問題2:由問題1你能得出什么結(jié)論?提示:一切金屬都能導電.問題3:若
2024-11-18 08:09
【總結(jié)】導數(shù)在實際問題中的應用目標認知學習目標:1.會從幾何直觀了解函數(shù)單調(diào)性和導數(shù)的關(guān)系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次.2.了解函數(shù)在某點取得極值的必要條件(導數(shù)在極值點兩端異號)和充分條件();會用導數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次.3.會求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【總結(jié)】-*-§3計算導數(shù)首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.能根據(jù)導數(shù)的定義求幾種常用函數(shù)的導數(shù),并能熟練運用.在公式推導過程中注意創(chuàng)新思維的培養(yǎng).2.掌握基本初等函數(shù)的求導公式,并能利用這些
2024-11-16 23:23
【總結(jié)】變化的快慢與變化率1、本節(jié)教材的地位與作用:變化率對理解導數(shù)概念及其幾何意義有著重要作用.是導數(shù)概念產(chǎn)生的基礎(chǔ).充分掌握好變化率這個概念,為順利過渡瞬時變化率,體會導數(shù)思想與內(nèi)涵做好準備工作.通過對大量實例的分析,引導學生經(jīng)歷由物理學中的平均速度到其它事例的平均變化率過程.所以變化率是一個重要的過渡性概念.對變化率概念意義的建構(gòu)對導數(shù)概念的學
【總結(jié)】-*-本章整合網(wǎng)絡構(gòu)建專題探究變化率與導數(shù)變化率平均變化率瞬時變化率導數(shù)導數(shù)的概念導數(shù)的幾何意義導數(shù)的計算定義法公式法導數(shù)的四則運算法則
2024-11-17 08:42
【總結(jié)】第三章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三看下面兩個問題:(1)三角函數(shù)都是周期函數(shù),y=tanx是三角函數(shù),所以y=tanx是周期函數(shù);(2)循環(huán)小數(shù)是有理數(shù),2·是循環(huán)小數(shù),所以2&
2024-11-18 08:08
【總結(jié)】歸納推理學習目標1.結(jié)合已學過的數(shù)學實例,了解歸納推理的含義;2.能利用歸納進行簡單的推理,體會并認識歸納推理在數(shù)學發(fā)現(xiàn)中的作用.學習過程一、課前準備在日常生活中我們常常遇到這樣的現(xiàn)象:(1)看到天空烏云密布,燕子低飛,螞蟻搬家,推斷天要下雨;(2)八月十五云遮月,來年正月十五雪打燈.以上例子可以得出推
【總結(jié)】導數(shù)的四則運算法則一、教學目標:掌握八個函數(shù)求導法則及導數(shù)的運算法則并能簡單運用.二、教學重點:應用八個函數(shù)導數(shù)求復雜函數(shù)的導數(shù)..教學難點:商求導法則的理解與應用.三、教學過程:(一)新課1.基本初等函數(shù)的導數(shù)公式(見教材)2.導數(shù)運算法則:(1).和(或差)的導數(shù)法則1兩個函數(shù)的和(或差)的導數(shù),等
2024-12-05 01:49
【總結(jié)】北師大版高中數(shù)學選修2-2第三章《導數(shù)應用》一、教學目標::(1)了解實際背景中導數(shù)的含義,體會導數(shù)的思想及其內(nèi)涵在實際問題中的應用;(2)理解世界問題中的具體情境,了解解題思路和方法。2.過程與方法:通過實際問題,讓學生進一步理解導數(shù)的思想,感知導數(shù)的含義.3.情感.態(tài)度與價值觀:使學生感受到學習導數(shù)的實際背景,增強學習從生
2025-07-18 13:16