【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓的幾何性質課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標為(0,1).
2024-12-04 18:02
【總結】導數(shù)的應用知識與技能:1.利用導數(shù)研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(小)值;2.利用導數(shù)求解一些實際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲担?/span>
2025-11-08 11:59
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學橢圓的幾何性質(2)導學案(無答案)蘇教版選修1-1【學習目標】1.能運用橢圓的幾何性質求橢圓的標準方程;2.會運用幾何性質求離心率;3.能解決與橢圓幾何性質有關的實際問題;4.了解橢圓的第二定義及焦點與準線間關系.【課前預習】1.與橢圓??0122
2025-11-11 00:31
【總結】如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:?求動點軌跡方程的一般步驟:(1)建立適當?shù)淖鴺讼?,用有序實?shù)對(x,y)表示曲線上任意一點M的坐標;(2)寫出適合條件P(M);(3)用坐標表示條件P(M),列出方程;(
2025-11-08 23:32
【總結】導數(shù)及其應用第一章一.創(chuàng)設情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學中四類問題的處理直接相關:一、已知物體運動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;二、求曲線的切線;三、求已知函數(shù)的最大值與最小值
【總結】數(shù)學:2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2025-11-08 17:38
【總結】橢圓及其標準方程第一課時你能列舉幾個生活中見過的橢圓形狀的物品嗎?請同學們將一根無彈性的細繩兩端分別系在兩顆圖釘下部,并將圖釘固定,用筆繃緊細繩在紙上移動,觀察畫出的軌跡是什么曲線。繪圖紙上的三個問題1.視筆尖為動點,兩個圖釘為定點,動點到兩定點距離之和符合什么條件?其軌跡如
【總結】幾種常見函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐.:);()
2025-11-09 12:09
【總結】函數(shù)的極值與導數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個區(qū)間內(nèi)的增函數(shù);如果在這個區(qū)
2025-11-09 12:08
【總結】2020/12/242020/12/24復習回顧平面內(nèi),動點p到兩個定點F1F2的距離和是常數(shù),p形成的軌跡?12122PFPFaFF???12122PFPFaFF???12122PFPFaFF???無軌跡.軌跡為線段軌跡為橢圓2020/12/24
【總結】【課堂新坐標】(教師用書)2020-2020學年高中數(shù)學雙曲線的幾何性質課后知能檢測新人教B版選修1-1一、選擇題1.等軸雙曲線的一個焦點是F1(-6,0),則它的標準方程是()218-x218=1B.x218-y218=128-y28=1D.y28-
2025-11-10 10:30
【總結】拋物線的幾何性質(二)一、基礎過關1.已知拋物線y2=2px(p0),過其焦點且斜率為1的直線交拋物線于A、B兩點,若線段AB的中點的縱坐標為2,則該拋物線的準線方程為()A.x=1B.x=-1C.x=2D.x=-22.已知拋物線y2=2px(p0
【總結】拋物線的幾何性質(一)一、基礎過關1.設點A為拋物線y2=4x上一點,點B(1,0),且|AB|=1,則A的橫坐標的值為()A.-2B.0C.-2或0D.-2或22.以x軸為對稱軸的拋物線的通徑(過焦點且與x軸垂直的弦)長為8,若拋物線的頂點在坐標原點,則其方程為
【總結】拋物線的幾何性質前面我們已學過橢圓與雙曲線的幾何性質,它們都是通過標準方程的形式研究的,現(xiàn)在請大家想想拋物線的標準方程、圖形、焦點及準線是什么?一、復習回顧:圖形方程焦點準線lFyxOlFyxOlFyxO
2025-11-09 08:56
【總結】關于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關于x軸、y軸、原點對稱)1
2025-11-08 17:10