【總結】拋物線的幾何性質(zhì)課題第1課時計劃上課日期:教學目標知識與技能掌握拋物線的幾何性質(zhì),能應用拋物線的幾何性質(zhì)解決問題過程與方法情感態(tài)度與價值觀教學重難點拋物線的幾何性質(zhì).教學流程\內(nèi)容\板書關鍵點撥加工潤色一、復習回顧拋物線的標
2025-11-11 00:30
【總結】第5課時拋物線的簡單性質(zhì)、頂點坐標和離心率并展開應用.了解“p”的意義,會求簡單的拋物線方程.、橢圓的類比,體會探究的樂趣,激發(fā)學習熱情.某公園要建造一個如圖1的圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,OA=米,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向
2024-12-05 06:39
【總結】雙曲線的幾何性質(zhì)一、基礎過關1.雙曲線2x2-y2=8的實軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-03 04:57
【總結】江蘇省漣水縣第一中學高中數(shù)學拋物線的標準方程教學案蘇教版選修1-1教學目標:掌握拋物線的定義和標準方程及其推導過程,理解拋物線中的基本量;掌握求拋物線的標準方程的基本方法;3.能夠熟練畫出拋物線的草圖,進一步提高學生“應用數(shù)學”的水平.重點難點:能根據(jù)已知條件求拋物線的標準方程.教學方法:講授法、討論法.教學過程:
2024-12-04 18:02
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學拋物線的標準導學案(無答案)蘇教版選修1-1【學習目標】線的標準方程;拋物線的標準方程【課前預習】1.拋物線的標準方程(1)定義:點的軌跡叫做拋物線.叫做拋物線的
2025-11-10 19:53
【總結】§基本邏輯聯(lián)結詞“且”與“或”一、基礎過關1.命題“ab≠0”是指()A.a(chǎn)≠0且b≠0B.a(chǎn)≠0或b≠0C.a(chǎn)、b中至少有一個不為0D.a(chǎn)、b不都為02.下列命題:①54或45;②9≥3;③若
2024-12-03 11:31
【總結】導數(shù)的實際應用一、基礎過關1.煉油廠某分廠將原油精煉為汽油,需對原油進行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是()A.8C.-1D.-82.設底為等邊三角形的直三棱柱的體積為
2024-12-03 11:30
【總結】拋物線的簡單幾何性質(zhì)【學習目標】掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì).【自主學習】根據(jù)拋物線的標準方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對稱性3.頂點4.離心率拋物線上的點M與焦點的距離和它到準線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-05 06:40
【總結】§橢圓的簡單幾何性質(zhì)課時安排5課時從容說課本節(jié)主要是通過對橢圓的標準方程的討論,研究橢圓的幾何性質(zhì),而這種依據(jù)曲線的方法去討論曲線的幾何性質(zhì)是學習解析幾何以來的第一次,因此在教學中,不僅要注意對研究結果的理解和應用,而且應注意對研究方法的學習.由于學生己對由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖象的特點比較熟悉,所以在學習由
2024-12-08 22:39
【總結】§橢圓橢圓及其標準方程(一)一、基礎過關1.設F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段2.設F1,F(xiàn)2是橢圓x225+y29=1的焦點,P為
2025-11-10 10:30
【總結】第6課時拋物線的簡單性質(zhì)的應用,會利用幾何性質(zhì)求拋物線的標準方程、焦點坐標、準線方程、焦半徑和通徑.,理解拋物線的焦點弦的特殊意義,結合定義得到焦點弦的公式,并利用該公式解決一些相關的問題.我們已經(jīng)學習了拋物線及拋物線的簡單幾何性質(zhì),拋物線的幾何性質(zhì)應用非常廣泛,通過類比橢圓、雙曲線的幾何性質(zhì),結合拋物線的標
2025-11-10 23:17
【總結】上圖所示是一些人造衛(wèi)星的繞地運行圖,這些衛(wèi)星的運行軌道,絕大多數(shù)是以地球的中心為一個焦點的橢圓,科學工作者常常根據(jù)近地距離與遠地距離來求這些衛(wèi)星運行軌道橢圓的近似方程。一.課標解讀:,初步掌握通過方程研究曲線性質(zhì)的方法。,掌握標準方程中的a,b,c,e的意義及a,b,c,e之間的關系。。二.學習目標:重點:利用橢
2025-11-08 11:59
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一、復習提問引入新課1.橢圓有哪些幾何性
2025-11-11 00:31
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(2)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一復習回顧1.雙曲線的標準方程和幾何性質(zhì)
2024-12-05 03:09
【總結】2020/12/25§(一)2020/12/25復習思考?、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2c)。)0(12222????bab
2025-11-09 12:09