【總結(jié)】鹽城市時楊中學(xué)2021年達標(biāo)課教學(xué)簡案學(xué)科數(shù)學(xué)授課教師張發(fā)軍授課班級高二(7)教學(xué)內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標(biāo):1、知識與技能:使學(xué)生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準(zhǔn)線。使學(xué)生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程課后知能檢測蘇教版選修1-1一、填空題1.雙曲線x216-y29=1的焦點坐標(biāo)為________.【解析】∵c2=a2+b2=25,∴焦點坐標(biāo)為(±5,0).【答案】(±5,0)2.
2024-12-04 18:02
【總結(jié)】一、選擇題1.在曲線y=x2+1的圖象上取一點(1,2)及鄰近一點(1+Δx,2+Δy),則yx??為()x+x?1+2x-x?1-2x+2+Δx-x?1'3(),(1)fxxf???()A.0B.13?
2024-11-30 14:39
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)雙曲線及其標(biāo)準(zhǔn)方程練習(xí)北師大版選修1-1一、選擇題1.已知A(0,-5)、B(0,5),|PA|-|PB|=2a,當(dāng)a=3或5時,P點的軌跡為()A.雙曲線或一條直線B.雙曲線或兩條直線C.雙曲線一支或一條直線D.雙曲線一支或一條射線[答案]
2024-11-28 19:11
【總結(jié)】橢圓及其標(biāo)準(zhǔn)方程2020年3月恩平一中:蘇彥斌難點:橢圓標(biāo)準(zhǔn)方程的推導(dǎo)和應(yīng)用重點:1、掌握橢圓的定義及其標(biāo)準(zhǔn)方程2、求橢圓標(biāo)準(zhǔn)方程的方法知識與技能:1、學(xué)習(xí)橢圓的標(biāo)準(zhǔn)方程及其應(yīng)用2、培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想過程與方法:通過觀察圖形,理解定義,推導(dǎo)方程,學(xué)生達到自主學(xué)習(xí)
2024-11-17 19:50
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程(說課稿)一、教材分析1、地位及作用圓錐曲線是一個重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時,圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的方法對雙曲線、拋物線方程的推導(dǎo)具有直接的類比作用,為學(xué)習(xí)雙曲線、拋物線內(nèi)容提供了基本模式和理論基礎(chǔ)。因此本節(jié)課具有承前啟后的作用,是本章的重點內(nèi)容。2、教
2025-06-07 23:16
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程【學(xué)習(xí)目標(biāo)】1.掌握雙曲線的定義;2.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點難點】雙曲線的概念,雙曲線標(biāo)準(zhǔn)方程雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)過程及化簡無理方程的常用的方法【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P52~P55,文P45~P48找出疑惑之處)復(fù)習(xí)1:橢圓的定義是什么?橢圓的標(biāo)準(zhǔn)方程
2024-12-06 00:20
【總結(jié)】事例:主人邀請張三、李四、王五三個人吃飯聊天,時間到了,只有張三和李四兩人準(zhǔn)時趕到,王五打來電話說:“臨時有急事,不能來了?!敝魅寺犃穗S口說了句:“你看看,該來的沒有來?!睆埲犃?,臉色一沉,起來一聲不吭地走了;主人愣了片刻,又道:“哎,不該走的又走了。”李四聽了大怒,拂袖而去。你能用邏輯學(xué)原理解釋這兩人離去的原因嗎?這就是今天我們來學(xué)習(xí)常
2024-11-18 12:16
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)雙曲線標(biāo)準(zhǔn)方導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】理解雙曲線的定義及標(biāo)準(zhǔn)方程【課前預(yù)習(xí)】1.回顧橢圓的定義,標(biāo)準(zhǔn)方程2.平面內(nèi)到兩定點的距離的差為常數(shù)的點的軌跡是什么?3.拉鏈演示4.雙曲線的定義:平面內(nèi)與兩個定點1F,2F的距
2024-12-06 00:25
【總結(jié)】§橢圓橢圓及其標(biāo)準(zhǔn)方程(一)一、基礎(chǔ)過關(guān)1.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段2.設(shè)F1,F(xiàn)2是橢圓x225+y29=1的焦點,P為
2024-11-19 10:30
【總結(jié)】2.雙曲線的簡單幾何性質(zhì)(共2課時)一、教學(xué)目標(biāo)1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等。2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題。二、教學(xué)重點、難點重點:雙曲線的幾何性質(zhì)及初步運用。難點:雙曲線的漸近線。三、教學(xué)過程(一)復(fù)習(xí)提問引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-08 08:44
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓及其標(biāo)準(zhǔn)方程課后知能檢測新人教B版選修1-1一、選擇題1.已知平面內(nèi)兩定點A,B及動點P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A,B為焦點的橢圓”,那么甲是乙的()A.充分不必要條件B.必要不充分條件
2024-12-03 11:30
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2020-2020學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)課后知能檢測新人教B版選修1-1一、選擇題1.等軸雙曲線的一個焦點是F1(-6,0),則它的標(biāo)準(zhǔn)方程是()218-x218=1B.x218-y218=128-y28=1D.y28-
【總結(jié)】導(dǎo)數(shù)的應(yīng)用知識與技能:1.利用導(dǎo)數(shù)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲担?.利用導(dǎo)數(shù)求解一些實際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?,
2024-11-17 11:59