【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個(gè)數(shù)字.可組成多少個(gè)沒(méi)有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問(wèn)題的限制條件是:①?zèng)]有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個(gè)位數(shù)字只能是0...
2024-10-21 11:00
【總結(jié)】排列組合教材分析四色問(wèn)題?任意一張地圖,用一種顏色對(duì)一個(gè)地區(qū)著色,那么一共只需要四種顏色就能保證每?jī)蓚€(gè)相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問(wèn)題?如果一個(gè)村子里每一個(gè)女孩都恰好認(rèn)識(shí)k個(gè)男孩,并且每一個(gè)男孩也恰好認(rèn)識(shí)k個(gè)女孩,那么每一個(gè)女孩都可以嫁給她認(rèn)識(shí)的一個(gè)男孩,并且每一個(gè)男孩都可以娶一個(gè)他認(rèn)識(shí)的女孩.穩(wěn)定的婚姻問(wèn)題?但是
2024-08-24 22:11
【總結(jié)】從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結(jié)】排列組合方法一解決排列組合問(wèn)題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2024-08-27 16:59
【總結(jié)】高中數(shù)學(xué)排列組合易錯(cuò)題分析排列組合問(wèn)題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒(méi)有理解兩個(gè)基本原理出錯(cuò)排列組合問(wèn)題基于兩個(gè)基本計(jì)數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問(wèn)題的前提.例1(1995年上海高考題)從6臺(tái)原裝計(jì)算機(jī)和5臺(tái)組裝計(jì)算機(jī)中任意選取5臺(tái),其中至少有原裝與組裝計(jì)算機(jī)各兩臺(tái),則不同的取法有種.誤解:因?yàn)榭?/span>
2025-03-25 02:36
【總結(jié)】解決排列組合中涂色問(wèn)題的常見(jiàn)方法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2024-08-04 07:24
【總結(jié)】排列組合與概率原理內(nèi)容分析:排列組合與概率的兩個(gè)基本原理是排列、組合的開(kāi)頭課,學(xué)習(xí)它所需的先行知識(shí)跟學(xué)生已熟知的數(shù)學(xué)知識(shí)聯(lián)系很少,排列、組合的計(jì)算公式都是以乘法原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以在教學(xué)目標(biāo)中特別提出要使學(xué)生學(xué)會(huì)準(zhǔn)確地應(yīng)用兩個(gè)基本原理分析和解決一些簡(jiǎn)單的問(wèn)題對(duì)于學(xué)生陌生的知識(shí),在開(kāi)頭課中首先作一個(gè)大概的介紹,使學(xué)生有一個(gè)
2025-06-17 05:28
【總結(jié)】排列組合測(cè)試卷1.7個(gè)人站一隊(duì),其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個(gè)人分乘兩輛不
2024-08-14 07:38
【總結(jié)】數(shù)學(xué)廣角排列組合嘉峪關(guān)市新城中心小學(xué):贠吉芳?一、教學(xué)內(nèi)容?課本第99頁(yè)知識(shí)?二、教學(xué)目標(biāo)?1、通過(guò)觀察、猜測(cè)、操作等活動(dòng)吧,學(xué)會(huì)最簡(jiǎn)單的排列和組合。?2、經(jīng)歷探索簡(jiǎn)單事物的排列和組合規(guī)律的過(guò)程。?3、培養(yǎng)血紅色呢過(guò)有順序地全面地思考問(wèn)題的意識(shí)。?4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生
2024-07-28 17:40
【總結(jié)】第一篇:有趣的排列組合 三年級(jí)上冊(cè)《數(shù)學(xué)廣角》 有趣的排列組合教學(xué)內(nèi)容:人教版三年級(jí)上冊(cè)數(shù)學(xué)廣角 教學(xué)目標(biāo): 1、結(jié)合具體情景,通過(guò)觀察、猜測(cè)、實(shí)驗(yàn)等數(shù)學(xué)活動(dòng),能有序地找 出簡(jiǎn)單的組合數(shù)。 ...
2024-10-25 17:55
【總結(jié)】│排列、組合│知識(shí)梳理知識(shí)梳理1.排列(1)定義:從n個(gè)不同元素中任取m(m≤n)個(gè)元素,排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù),叫做從
2024-08-14 07:24
【總結(jié)】排列組合問(wèn)題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的空位和兩端.,如果甲乙兩個(gè)必須不相鄰,那么不同的排法種
2025-03-25 02:37
【總結(jié)】高考數(shù)學(xué)中涂色問(wèn)題的常見(jiàn)解法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,因而這類問(wèn)題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類型及求解方法1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1。用5種不同的顏色給圖中
【總結(jié)】二十種排列組合問(wèn)題的解法排列組合問(wèn)題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問(wèn)題,首先要認(rèn)真審題,弄清楚是排列問(wèn)題、組合問(wèn)題還是排列與組合綜合問(wèn)題;其次要抓住問(wèn)題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉?lái)處理.教學(xué)目標(biāo).;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題.提高學(xué)生解決問(wèn)題分析問(wèn)題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中
【總結(jié)】.排列組合方法歸納大全解決排列組合綜合性問(wèn)題的一般過(guò)程如下:,即采取分步還是分類,或是分步與分類同時(shí)進(jìn)行,確定分多少步及多少類。(有序)還是組合(無(wú)序)問(wèn)題,元素總數(shù)是多少及取出多少個(gè)元素.,往往類與步交叉,因此必須掌握一些常用的解題策略,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).練習(xí)題:7種不同的花種在排成一列的花盆里,若兩
2024-08-14 07:17