【總結(jié)】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
2025-03-25 02:37
【總結(jié)】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運(yùn)算”重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題。例18名同學(xué)爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】排列組合排列定義???從n個不同的元素中,取r個不重復(fù)的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當(dāng)r=n時稱為全排列。一般不說可重即無重。可重排列的相應(yīng)記號為P(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復(fù)的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結(jié)】完美WORD格式專題三:排列、組合及二項式定理一、排列、組合與二項式定理【基礎(chǔ)知識】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】主題課題:兩個原理和排列知識內(nèi)容:1、分類計數(shù)原理和分步計數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計算公式4.排列應(yīng)用題能力目標(biāo):1、通過兩個原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實際問題的能力;2、通過排列的學(xué)習(xí),可以遷移知識,更好的運(yùn)用兩個原理,并能解決稍復(fù)雜的數(shù)學(xué)問題。3、培養(yǎng)學(xué)生的分析問題能力、解決問題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
【總結(jié)】編號: 時間:2021年x月x日 海納百川 頁碼:第8頁共8頁 高中數(shù)學(xué)排列組合解答方法技巧_ 插板法就是在n個元素間的(n-1)個空中插入若干個(b)個板,可以把n個元素分成(...
2025-04-14 03:52
【總結(jié)】專業(yè)資料整理分享排列組合典型題大全一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),
2025-06-25 23:05
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2024-10-21 11:00
【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個地區(qū)著色,那么一共只需要四種顏色就能保證每兩個相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個村子里每一個女孩都恰好認(rèn)識k個男孩,并且每一個男孩也恰好認(rèn)識k個女孩,那么每一個女孩都可以嫁給她認(rèn)識的一個男孩,并且每一個男孩都可以娶一個他認(rèn)識的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結(jié)】從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結(jié)】高中數(shù)學(xué)排列組合易錯題分析排列組合問題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒有理解兩個基本原理出錯排列組合問題基于兩個基本計數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提.例1(1995年上海高考題)從6臺原裝計算機(jī)和5臺組裝計算機(jī)中任意選取5臺,其中至少有原裝與組裝計算機(jī)各兩臺,則不同的取法有種.誤解:因為可
【總結(jié)】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2025-07-26 07:24
【總結(jié)】排列組合與概率原理內(nèi)容分析:排列組合與概率的兩個基本原理是排列、組合的開頭課,學(xué)習(xí)它所需的先行知識跟學(xué)生已熟知的數(shù)學(xué)知識聯(lián)系很少,排列、組合的計算公式都是以乘法原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以在教學(xué)目標(biāo)中特別提出要使學(xué)生學(xué)會準(zhǔn)確地應(yīng)用兩個基本原理分析和解決一些簡單的問題對于學(xué)生陌生的知識,在開頭課中首先作一個大概的介紹,使學(xué)生有一個
2025-06-17 05:28
【總結(jié)】排列組合測試卷1.7個人站一隊,其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個人分乘兩輛不
2025-08-05 07:38