【總結】第七節(jié)n次獨立重復試驗與二項分布(理)抓基礎明考向提能力教你一招我來演練第十章概率(文)計數原理、概率、隨機變量及其分布(理)返回[備考方向要明了]考什么.
2025-05-09 09:59
【總結】(3)獨立重復試驗與二項分布選修2-3第二章對于兩事件A和B,當P(A)0時,則)(/)(APABP稱為事件A發(fā)生的條件下事件B發(fā)生的條件概率,記為P(AB)/P(A)1、條件概率2一、復習回顧說明:1)可加性:若B、C互斥則?
2025-04-22 15:28
【總結】第3講隨機變量及其分布列感悟高考明確考向(2010·福建)設S是不等式x2-x-6≤0的解集,整數m,n∈S.(1)記“使得m+n=0成立的有序數組(m,n)”為事件A,試列舉A包含的基本事件;(2)設ξ=m2,求
2024-11-12 16:41
【總結】教材分析目標分析教法與學法分析過程與設計意圖評價分析教材分析(一)教材的地位與作用概率:隨機現象規(guī)律本節(jié):獨立重復試驗——二項分布兩點分布超幾何分布基礎:離散型隨機變量的分布條件概率、事件相互獨立性意義:對數學及相關學科的學習產生深遠的影響。選修2-3第二
2025-01-06 16:34
【總結】俺投籃,也是講概率地??!Ohhhh,進球拉!??!第一投,我要努力!又進了,不愧是姚明?。?!第二投,動作要注意??!第三次登場了!這都進了!!太離譜了!第三投,厲害了啊??!……第四投,大灌藍哦?。∶髯鳛橹袖h,他職業(yè)生涯的罰球命中率為,假設他每
2024-11-17 12:57
【總結】第三章概率與統計二項分布創(chuàng)設情境興趣導入我們來做一個實驗.袋中有5個乒乓球,其中3個黃球,2個白球,連續(xù)抽取5次,每次抽取出一個球觀察,然后將取出的球之后球放回,再重新抽取,這種抽取方式叫做又放回的抽?。苊黠@每一次是否抽取到黃球對其他次是否取到黃球是沒有影響的.動腦思考
2024-11-17 16:56
【總結】判斷是否相互獨立求事件的概率問題提出定義本課小結作業(yè):課本68PA組第1、3題事件的相互獨立性思考3問題引入:思考1.甲盒子里有3個白球和2個黑球,乙盒子里有2個白球和2個黑球,記A=從甲盒子里摸出1個球,得到白球;B=從乙壇子里摸出
2024-11-18 12:12
【總結】獨立重復試驗與二項分布習題課知識要點:在相同條件下重復做的n次試驗.:設在每次試驗中事件A發(fā)生的概率為p,則在n次獨立重復試驗中,事件A恰好發(fā)生k次的概率,k=0,1,2,?,n.(1)kknkknP
2024-11-09 01:06
【總結】二項分布情景引入:拋擲一枚質地均勻的骰子3次,每次可能出現5,也可能不出現5,記出現5為事件A,則每次出現5的概率p都是______,不出現5的概率q為1-p=_______6165n次獨立重復試驗的定義:一般地,由n次試驗構成,且每次試驗相互獨立完成,每次試
2025-08-16 02:01
【總結】分布列(三)—一般分布列的求解古典概型——計數原理求分布列()隨機抽取某廠的某種產品200件,經質檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為.(1)求的分布列;(2)求1件產品的平均利潤(即的數學期望);(3)經技術革新后,仍有四個
2025-06-26 11:39
【總結】(了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,并能解決一些簡單的實際問題/利用實際問題的直方圖,了解正態(tài)分布曲線的特點及曲線所表示的意義)二項分布與正態(tài)分布1.相互獨立事件的定義:設A,B為兩個事件,如果P(AB)=P(A)P(B),則稱事件A與事件B相互獨立(mutuallyindependent)
2025-04-29 03:21
【總結】學案5離散型隨機變量及其分布列離散型隨機變量及其分布列布列的概念,認識分布列刻畫隨機現象的重要性,會求某些取有限個值的離散型隨機變量的分布列.,并能進行簡單應用.求簡單隨機變量的分布列,以及由此分布列求隨機變量的期望與方差.這部分知識綜合性強,涉及排列、組合、二項式定理和概率,仍會以解答題形式出現,以
2025-06-12 18:50
【總結】條件概率及思考一引入引入問題本課小結作業(yè):課本68PA組第2題條件概率思考二我們知道求事件的概率有加法公式:若事件A與B互斥,則()()()PABPAPB??.那么怎么求A與B的積事件AB呢?注:1.
2024-11-17 12:01
【總結】【課題】3.4二項分布(二)【教學目標】知識目標:理解二項分布的概念,會計算服從二項分布的隨機變量的概率.能力目標:學生的數學計算技能和數學思維能力得到提高.【教學重點】二項分布的概念.【教學難點】服從二項分布的隨機變量的概率的計算.【教學設計】二項分布是以伯努利實驗為背景的重要分
2024-12-08 13:08
【總結】【課題】3.4二項分布(一)【教學目標】知識目標:理解獨立重復試驗的概念.能力目標:學生的數學計算技能和數學思維能力得到提高.【教學重點】獨立重復試驗的概念.【教學難點】伯努利公式.【教學設計】直接利用“有放回”的抽取球的實驗,引入獨立重復試驗的概念.采用“有放回”的方法,從袋中連