【總結(jié)】課堂講練互動(dòng)活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)定積分在物理中的應(yīng)用課堂講練互動(dòng)活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)【課標(biāo)要求】1.通過具體實(shí)例了解定積分在物理中的應(yīng)用.2.會(huì)求變速直線運(yùn)動(dòng)的路程、位移和變力作功問題.【核心掃描】利用定積分求變速直線運(yùn)動(dòng)的路程、位移和變力所作的功.(重點(diǎn))課堂講練互動(dòng)活頁
2025-01-13 21:43
【總結(jié)】第4講定積分與微積分的基本定理★知識(shí)梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點(diǎn),將區(qū)間等分成幾個(gè)小區(qū)間,在每一個(gè)小區(qū)間上任取一點(diǎn),作和,當(dāng)時(shí),上述和無限接近某個(gè)常數(shù),這個(gè)常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(zhì)(1);
2024-08-26 05:56
【總結(jié)】微積分公式與定積分計(jì)算練習(xí)(附加三角函數(shù)公式)一、基本導(dǎo)數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導(dǎo)數(shù)的四則運(yùn)算法則三、高階導(dǎo)數(shù)的運(yùn)算法則(1)
2025-03-25 01:57
【總結(jié)】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2024-07-31 11:18
【總結(jié)】人教課標(biāo)A版數(shù)學(xué)選修2-2定積分在物理中的應(yīng)用定積分的簡(jiǎn)單應(yīng)用:Oab()vvt?tvit設(shè)物體運(yùn)動(dòng)的速度v?v(t)(v(t)≥0),則此物體在時(shí)間區(qū)間[a,b]內(nèi)運(yùn)動(dòng)的路程s為()basvtdt??一、變速直線運(yùn)動(dòng)的路程例1一輛汽車的速度——時(shí)間
2025-01-13 21:15
【總結(jié)】微積分學(xué)基本定理與定積分的計(jì)算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測(cè)捷蛘錙張入痖儲(chǔ)琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2024-10-19 18:07
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2024-07-31 11:10
【總結(jié)】§定積分在物理上的應(yīng)用由物理學(xué)知道,在水深為h處的壓強(qiáng)為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點(diǎn)處壓強(qiáng)p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2024-09-01 14:19
【總結(jié)】第6章定積分§定積分概念與性質(zhì)§微積分基本公式§定積分的換元積分法和分部積分法§定積分的應(yīng)用§反常積分初步目錄上一頁目錄下一頁退出回顧曲邊梯形求面積的問題abxyo§定積分的應(yīng)用定積分的
2025-04-29 00:58
【總結(jié)】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對(duì)解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22
【總結(jié)】《定積分的簡(jiǎn)單應(yīng)用在物理中的應(yīng)用》定積分在物理中的應(yīng)用定積分目錄后退主頁退出本節(jié)知識(shí)引入本節(jié)目的與要求本節(jié)重點(diǎn)與難點(diǎn)本節(jié)復(fù)習(xí)指導(dǎo)I.變力沿直線所作的功1.由物理學(xué)知道,如果物體在作直線運(yùn)動(dòng)的過程中有一個(gè)不變的力F作用在這物體
2024-08-14 07:24
【總結(jié)】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項(xiàng)二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2024-08-29 09:08
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-08-20 08:39
【總結(jié)】湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案微積分的基礎(chǔ)知識(shí)及其在Matlab中的實(shí)現(xiàn)明巍數(shù)學(xué)與統(tǒng)計(jì)學(xué)院湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案數(shù)學(xué)建模種常用的微積分知識(shí)在Matlab中的實(shí)現(xiàn)1.極限運(yùn)算2.求導(dǎo)運(yùn)算3.積分運(yùn)算4.函數(shù)的Taylor
2024-08-13 22:40
【總結(jié)】第六章定積分應(yīng)用v定積分的元素法v定積分在幾何學(xué)上的應(yīng)用v定積分在物理學(xué)上的應(yīng)用定積分的幾何應(yīng)用平面圖形的面積體積平面曲線的弧長(zhǎng)Oxy第三節(jié)定積分在物理學(xué)上的應(yīng)用定積分物理應(yīng)用之一變力沿直線作功問題從物理學(xué)知道,若物體在作直線運(yùn)動(dòng)過程中受常力作用從a移至b(力的方向與物體運(yùn)動(dòng)方向一致),力對(duì)物體所作的
2025-04-29 00:02