【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【總結(jié)】§定積分在物理上的應(yīng)用由物理學(xué)知道,在水深為h處的壓強(qiáng)為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點(diǎn)處壓強(qiáng)p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2025-08-23 14:19
【總結(jié)】第6章定積分§定積分概念與性質(zhì)§微積分基本公式§定積分的換元積分法和分部積分法§定積分的應(yīng)用§反常積分初步目錄上一頁目錄下一頁退出回顧曲邊梯形求面積的問題abxyo§定積分的應(yīng)用定積分的
2025-04-29 00:58
【總結(jié)】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對(duì)解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22
【總結(jié)】《定積分的簡單應(yīng)用在物理中的應(yīng)用》定積分在物理中的應(yīng)用定積分目錄后退主頁退出本節(jié)知識(shí)引入本節(jié)目的與要求本節(jié)重點(diǎn)與難點(diǎn)本節(jié)復(fù)習(xí)指導(dǎo)I.變力沿直線所作的功1.由物理學(xué)知道,如果物體在作直線運(yùn)動(dòng)的過程中有一個(gè)不變的力F作用在這物體
2025-08-05 07:24
【總結(jié)】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項(xiàng)二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案微積分的基礎(chǔ)知識(shí)及其在Matlab中的實(shí)現(xiàn)明巍數(shù)學(xué)與統(tǒng)計(jì)學(xué)院湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案數(shù)學(xué)建模種常用的微積分知識(shí)在Matlab中的實(shí)現(xiàn)1.極限運(yùn)算2.求導(dǎo)運(yùn)算3.積分運(yùn)算4.函數(shù)的Taylor
2025-08-04 22:40
【總結(jié)】第六章定積分應(yīng)用v定積分的元素法v定積分在幾何學(xué)上的應(yīng)用v定積分在物理學(xué)上的應(yīng)用定積分的幾何應(yīng)用平面圖形的面積體積平面曲線的弧長Oxy第三節(jié)定積分在物理學(xué)上的應(yīng)用定積分物理應(yīng)用之一變力沿直線作功問題從物理學(xué)知道,若物體在作直線運(yùn)動(dòng)過程中受常力作用從a移至b(力的方向與物體運(yùn)動(dòng)方向一致),力對(duì)物體所作的
2025-04-29 00:02
【總結(jié)】第八節(jié)定積分的幾何應(yīng)用舉例一、平面圖形的面積二、體積三、平面曲線的弧長一、平面圖形的面積1、直角坐標(biāo)系情形設(shè)曲線y=f(x)(x?0)與直線x=a,x=b(ab)及x軸所圍曲邊梯形的面積為A,則xyo)(xfy?abxxxd?
2025-04-29 05:41
【總結(jié)】微積分在物理學(xué)上的應(yīng)用1引言微積分是數(shù)學(xué)的一個(gè)基本學(xué)科,內(nèi)容包括微分學(xué),積分學(xué),極限及其應(yīng)用,其中微分學(xué)包括導(dǎo)數(shù)的運(yùn)算,因此使速度,加速度等物理元素可以使用一套通用的符號(hào)來進(jìn)行討論。而在大學(xué)物理中,使用微積分去解決問題是及其普遍的。對(duì)于大學(xué)物理問題,可是使其化整為零,將其分成許多在較小的時(shí)間或空間里的局部問題來進(jìn)行分析。只要這些局部問題分的足夠小,足以使用簡單,可研究的方法來
2025-04-04 02:24
【總結(jié)】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【總結(jié)】問題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計(jì)算.例1求積分.
2025-07-22 11:11
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因?yàn)楣艢W洲人喜歡用石子來幫助計(jì)算,所以calculus被引申作計(jì)算的意思。?現(xiàn)時(shí)醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個(gè)中文詞,最早見諸清代數(shù)學(xué)家李善蘭和英國
2024-09-29 08:13
【總結(jié)】一、六個(gè)基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個(gè)多項(xiàng)式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39