【總結】......第二節(jié)定積分計算公式和性質(zhì)一、變上限函數(shù)設函數(shù)在區(qū)間上連續(xù),并且設x為上的任一點,于是,在區(qū)間上的定積分為這里x既是積分上限,又是積分變量,由于定積分與積分變量無關,故可將此改為如果上限x
2025-06-18 12:58
【總結】特點:)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應用中已知近似公式:需要解決的問題如何提高精度?如何估計誤差?xx的一次多項式
2024-08-10 16:25
【總結】1微積分基本公式問題的提出積分上限函數(shù)及其導數(shù)牛頓—萊布尼茨公式小結思考題作業(yè)(v(t)和s(t)的關系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運動中路
2025-02-21 10:32
【總結】2設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【總結】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2024-08-30 12:42
【總結】定理假設(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.第
2025-04-21 04:54
【總結】常用微積分公式???????基本積分公式均直接由基本導數(shù)公式表得到,因此,導數(shù)運算的基礎好壞直接影響積分的能力,應熟記一些常用的積分公式. 因為求不定積分是求導數(shù)的逆運算,所以由基本導數(shù)公式對應可以得到基本積分公式.。(1)?????
2024-07-31 12:20
【總結】考無憂論壇-----考霸整理版有關高等數(shù)學計算過程中所涉及到的數(shù)學公式(集錦)一、(系數(shù)不為0的情況)二、重要公式(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)三、下列常用等價無窮小關系()
2024-08-30 21:58
2024-07-31 12:25
【總結】一、分部積分公式二、小結思考題第五節(jié)定積分的分部積分法設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導??,vuvuuv???????()d,bbaauvxuv?????d
2024-08-20 16:42
【總結】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應用三、旋轉體的體積四、平行截面面積已知的立體的體積五、小結回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
【總結】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟應用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【總結】費馬(fermat)引理第六節(jié)微分中值定理且在x0處可導,若)(?或證則0?0?xyo0x設f(x)在點x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2024-07-31 11:20
【總結】11.定積分的概念:特殊和式的極限.()bafxdx??01lim()niiifx??????2.定積分存在的必要條件和充分條件()[,]()[,]fxabfxab若在上必要條可積,則件在上有界.若函數(shù))(xf
2025-01-19 11:22
【總結】()dbafxx??定積分定義定積分的幾何意義:0lim??各部分面積的代數(shù)和可積的兩個充分條件:1.2.且只有有限個間斷點定積分的性質(zhì)(7條)§內(nèi)容回顧ix?()if?1ni??(大前提:函數(shù)有界)定積分的性質(zhì)(設所列定積分都存在)0d)(??aa
2025-01-20 05:32