【總結(jié)】微積分公式表導(dǎo)數(shù)函數(shù)積分冪函數(shù)系—指數(shù)函數(shù)系指數(shù)函數(shù)對數(shù)函數(shù)導(dǎo)數(shù)函數(shù)積分三角函數(shù)系三角函數(shù)
2024-08-30 21:58
【總結(jié)】高等數(shù)學微積分公式大全一、基本導(dǎo)數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導(dǎo)數(shù)的四則運算法則三、高階導(dǎo)數(shù)的運算法則(1)(2)(3)
2025-07-24 12:04
【總結(jié)】由微信公眾號大學游樂場整理提供有關(guān)高等數(shù)學計算過程中所涉及到的數(shù)學公式(集錦)一、(系數(shù)不為0的情況)二、重要公式(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)三、下列常用等價無窮小關(guān)系()
2025-07-24 14:20
【總結(jié)】數(shù)學常用公式同角三角函數(shù)cscα=1sinα secα=1cosα sin2α+cos2α=tan2α 1+tan2α=sec2α 1+cot2α=csc2α tanα=sinαcosα=secαcscα arccosα=π2-arcsinα arccotα=π2-arctanα半角公式sinα=2tanα21+tan2α2 cosα
2025-08-17 05:33
【總結(jié)】高等數(shù)學微積分公式大全一、基本導(dǎo)數(shù)公式⑴(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)二、微分公式與微分運算法則⑴⑵⑶⑷⑸⑹⑺⑻⑼
2024-09-01 21:55
【總結(jié)】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結(jié)】第三節(jié)微積分基本公式一、問題的提出二、變上限函數(shù)及其導(dǎo)數(shù)三、牛頓—萊布尼茨公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路
2025-07-20 17:38
【總結(jié)】一、一個方程的情形二、方程組的情形三、小結(jié)思考題第五節(jié)隱函數(shù)的求導(dǎo)公式0),(.1?yxF一、一個方程的情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點),
2025-08-11 16:41
【總結(jié)】第5章定積分及其應(yīng)用微積分基本公式習題解1.設(shè)函數(shù),求,?!窘狻坑深}設(shè)得,于是得,。2.計算下列各導(dǎo)數(shù):⑴;【解】。⑵;【解】。⑶;【解】。⑷。【解】。3.設(shè)函數(shù)由方程所確定,求?!窘夥ㄒ弧糠匠讨型瓿煞e分即為,亦即為,得知,解出,得,于是得?!窘?/span>
2025-07-26 04:21
【總結(jié)】:基本積分表:三角函數(shù)的有理式積分:一些初等函數(shù):兩個重要極限:三角函數(shù)公式:183。誘導(dǎo)公式:函數(shù)角Asincostgctg-α-sinαcosα-tgα-ctgα90176。-αcosαsinαct
2024-09-01 22:00
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2025-07-22 11:10
【總結(jié)】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【總結(jié)】1715(1)[406頁]222xdxyd?【題型】簡單微分方程?!窘狻糠e分一次,得12cdxxdxdy???1331cx??再積分一次,得21331cdxcdxxy?????通解為214121cxcxy???1725(
2024-10-19 18:07
【總結(jié)】第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁
2025-03-22 04:31