【總結(jié)】專題二:數(shù)列前n項和的求法一、倒序相加法求數(shù)列的前n項和如果一個數(shù)列{an},與首末項等距的兩項之和等于首末兩項之和,可采用把正著寫與倒著寫的兩個和式相加,就得到一個常數(shù)列的和,這一求和方法稱為倒序相加法。例如:等差數(shù)列前n項和公式的推導(dǎo),用的就是“倒序相加法”。例1:設(shè)等差數(shù)列{an},公差為d,求證:{an}的前n項和Sn=n(a1+an)/2
2024-08-01 16:02
【總結(jié)】Chap1數(shù)列的極限1.設(shè)及,用語言,證明:. 證,. (1)當(dāng)時,那么,下證. ,則存在,當(dāng)時,. ,此即. . (2)當(dāng)時,,存在,當(dāng)時,. .. 綜上兩方面,即證.2.已知,用語言,證明:. 證
2024-08-14 07:27
【總結(jié)】首頁末頁上一頁下一頁瞻前顧后演練廣場要點突破典例精析考題賞析2.2數(shù)列的極限二極限首頁末頁上一頁下一頁瞻前顧后演練廣場要點突破典例精析考題賞析首頁末頁上一頁下一頁瞻前顧后演練廣場要點突破典例精析考題賞析
2025-01-19 10:50
【總結(jié)】專題九:數(shù)列的極限與函數(shù)的導(dǎo)數(shù)【考點審視】極限與導(dǎo)數(shù)作為初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,新課程卷每年必考,主要考查極限與導(dǎo)數(shù)的求法及簡單應(yīng)用??v觀近年來的全國卷與各省市的試卷,試題呈“一小一大”的布局,“小題”在選擇、填空題中出現(xiàn)時,都屬容易題;“大題”在解答題中出現(xiàn)時,極限通常與其它數(shù)學(xué)內(nèi)容聯(lián)系而構(gòu)成組合題,主要考查極限思想與方法的靈活應(yīng)用能力;導(dǎo)數(shù)的考查常給出一個含參的函數(shù)或應(yīng)用建模,通
2025-05-16 04:51
【總結(jié)】第三章極限與函數(shù)的連續(xù)性一、數(shù)列的極限二、函數(shù)的極限三、函數(shù)的連續(xù)性四、無窮小量無窮大量的比較極限概念的萌芽可追溯至公元前300年,當(dāng)時我國著名哲學(xué)家莊子的著作中便有“一尺之棰,日取其半,萬世不竭”(莊子《天下篇》)的論述。在南北朝(429-500)時期,祖沖之利用極限的思想計算圓周率,取得了很大的成功。他利用圓內(nèi)接多邊
2025-04-30 18:12
【總結(jié)】第一篇: 高等數(shù)學(xué)(1)標(biāo)準(zhǔn)化作業(yè)題參考答案—2班級姓名學(xué)號 第二節(jié)數(shù)列的極限 一、單項選擇題 =A的幾何意義是n?¥ A.在點A的某一鄰域內(nèi)部含有{yn}中的無窮多個點 {yn}中的無窮...
2024-11-15 00:24
【總結(jié)】這里就有幾個這樣做法的例題,均為采用加1的做法。就只想弄懂一定:到底有沒有必要“+1”?
2025-03-25 02:51
【總結(jié)】1、數(shù)列極限的直觀描述性定義2、利用定義求數(shù)列極限3、常用數(shù)列的極限01、若,則下面幾個結(jié)論中,正確的是()A.B.C.D.A.B.C.D.2、a=1|a|1或a=-1呢?4、給出下列命題:(1)有窮數(shù)列沒有極限;
2024-11-09 06:17
【總結(jié)】安康學(xué)院本科生畢業(yè)論文學(xué)號2011211335分類號O13本科生畢業(yè)論文(設(shè)計)題目:極限的求法與技巧的探究院(系)數(shù)學(xué)與統(tǒng)計系專業(yè)班級數(shù)學(xué)與應(yīng)用數(shù)學(xué)2011級應(yīng)用班學(xué)生姓名屈瑤瑤
2025-06-24 02:57
【總結(jié)】數(shù)列通項公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項公式的試題概覽年份試題特點或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【總結(jié)】數(shù)列極限的性質(zhì)定理1每個收斂的數(shù)列只有一個極限.證明例1在數(shù)列{xn}中任意抽取無限多項并保持這些項在原數(shù)列中的先后次序,得到的數(shù)列稱為子數(shù)列:定理2若數(shù)列xn收斂于a,則它的任一子數(shù)列也收斂,且極限也是a這一定理表明的是收斂的數(shù)列與其子數(shù)列之間的關(guān)系。由此可知,若數(shù)列xn有兩個子數(shù)列收斂于不
2024-11-10 22:55
【總結(jié)】數(shù)列極限部分較難習(xí)題解答數(shù)列極限部分書后較難的作業(yè)解答:一.((書)第10題)證明數(shù)列有極限證明:(一)因為故單減.(二)由不等式得所以有.,有極限.,,證明:收斂,且求.解:(一)假設(shè)收斂,并記由已知得遞推關(guān)系式:,令,利用,得,即解方程得
【總結(jié)】數(shù)列前n項和的求法求數(shù)列前n項和是數(shù)列的重要內(nèi)容,也是一個難點。求等差(等比)數(shù)列的前n項和,主要是應(yīng)用公式。對于一些既不是等差也不是等比的數(shù)列,就不能直接套用公式,而應(yīng)根據(jù)它們的特點,對其進行變形、轉(zhuǎn)化,利用化歸的思想,來尋找解題途徑。一、拆項轉(zhuǎn)化法例1已知數(shù)列
2024-08-14 07:30
【總結(jié)】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是??嫉囊粋€知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2025-06-26 05:23