【總結】等差數(shù)列前n項和公式復習回顧(1)等差數(shù)列的通項公式:已知首項a1和公差d,則有:an=a1+(n-1)d已知第m項am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【總結】等差數(shù)列的前n項和數(shù)列{an}是等差數(shù)列的條件an-an-1=d等差數(shù)列{an}的通項公式an=a1+(n-1)d等差數(shù)列{an}的性質m+n=p+qam+an=ap+aq一、數(shù)列前n項和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a1+
2025-09-30 17:27
【總結】等差數(shù)列的前n項和公式一新課引入一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?播放課件一個堆放小球的V形架問題就是“”?1004321???????這是小學時就知道的一個故事,
2025-09-30 17:22
【總結】等比數(shù)列的前項和教學設計江西省樟樹中學李志紅一、教材分析《等比數(shù)列的前項和》是高中數(shù)學北師大版必修第一章第三節(jié)的內(nèi)容,,不僅加深對函數(shù)思想的理解,也為以后學習數(shù)列求和、,比如分期付款或按復利計算的儲蓄問題等.二、學情分析.學生經(jīng)過高中一年的教學訓練,思維比較活躍,計算能力較強,邏輯推理和分析概括的能力也有了一定的提高,但思考問題時還是不夠深入、不夠嚴謹..學生學習
2025-04-17 08:31
【總結】等比數(shù)列通項公式:等比數(shù)列的定義:等比數(shù)列的性質:各個格子里的麥粒數(shù)依次是發(fā)明者要求的麥??倲?shù)就是1+2+23+…+263=國王能否滿足發(fā)明者的要求?1,2,22,…,263如何求出這個和式的具體數(shù)值呢?問題1:發(fā)明者要求的麥??倲?shù)是:S64=1+2+22+…+263問題2:一般地,對于等比數(shù)列一般地
2025-08-05 15:48
【總結】復習回顧通項公式:等差數(shù)列中:前n項和公式:例題講解例1.求集合中元素的個數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個元素,它們的和等于7
2025-10-31 05:34
【總結】等比數(shù)列的前n項和(一)李超2020年9月(一)知識回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2025-09-19 12:18
【總結】等比數(shù)列的前n項和(二)復習引入1.等比數(shù)列求和公式復習引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復習引入1.等比數(shù)列求和公式?????????
2025-07-21 04:14
【總結】第一篇:等差數(shù)列的前n項和教案 等差數(shù)列的前n項和 一:教材分析 本節(jié)課內(nèi)容位于高中人教版必修五第二章第三節(jié)。它是在學習了等差數(shù)列的基礎上來研究和討論的,是繼等差數(shù)列之后的又一重要的概念。主要利...
2025-10-14 17:55
【總結】《等差數(shù)列前n項和的公式》說課稿教學目標:A、知識目標:掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。B、能力目標:(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。(2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方
2025-08-26 11:26
【總結】敬業(yè)、協(xié)作、啟智、進取第1頁共4頁《等比數(shù)列的前n項和》(第一課時)導學案臨潼區(qū)華清中學徐立宏【教學目標】知識與技能1.理解等比數(shù)列的前n項和公式的推導方法;2.掌握等比數(shù)列的前n項和公式并能運用公式解決一些簡單問題.過程與方法1.提高學生的建模意識及探究問題、分析與解決問題的能
2025-11-15 17:07
【總結】(理解等差數(shù)列的概念/掌握等差數(shù)列的通項公式與前n項和公式/了解等差數(shù)列與一次函數(shù)的關系)第五單元數(shù)列等差數(shù)列及其前n項和1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于常數(shù),這個數(shù)列就叫做等差數(shù)列(arithmeticsequence),這個常數(shù)就叫做等差數(shù)列
2025-05-12 17:18
【總結】=(1100)(299)(5051)??????原式那么S=1+2+3+…+997+998+999=?倒序相加法求等差數(shù)列前n項和:)?梯上底下底高(+S=2解:3)1313??11371(a+a2aS===52.2
【總結】等差數(shù)列的前n項和性質復習:2)(1nnaanS??11(1)2nSnannd???21()22ddnan???關于n的二次函數(shù)dnaan)1(1???當d≠0時,這是關于n的一個一次函數(shù)。n項和公式:1()dnad???595
2025-05-12 17:19
【總結】《等比數(shù)列的前n項和》的教學反思 《等比數(shù)列的前n項和》的教學反思1今天講授《等比數(shù)列前n項和公式》。引導學生探究等比數(shù)列前n項和公式是重要內(nèi)容。在探究公式的計算方法時,讓學生通過觀察、分析...
2025-11-27 01:25