freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

高考數(shù)學必考直線和圓錐曲線經典題型含詳解(編輯修改稿)

2025-05-14 12:45 本頁面
 

【文章內容簡介】 值問題例題(07湖北理科)在平面直角坐標系xOy中,過定點C(0,p)作直線與拋物線x2=2py(p0)相交于A、B兩點。(Ⅰ)若點N是點C關于坐標原點O的對稱點,求△ANB面積的最小值;(Ⅱ)是否存在垂直于y軸的直線l,使得l被以AC為直徑的圓截得弦長恒為定值?若存在,求出l的方程;若不存在,說明理由。(此題不要求在答題卡上畫圖)本小題主要考查直線、圓和拋物線等平面解析幾何的基礎知識,考查綜合運用數(shù)學知識進行推理運算的能力和解決問題的能力.解法1:(Ⅰ)依題意,點N的坐標為N(0,p),可設A(x1,y1),B(x2,y2),直線AB的方程為y=kx+p,與x2=2py聯(lián)立得消去y得x22pkx2p2=0.由韋達定理得x1+x2=2pk,x1x2=2p2.于是==.(Ⅱ)假設滿足條件的直線l存在,其方程為y=a,AC的中點為徑的圓相交于點P、Q,PQ的中點為H,則=. ===令,得為定值,故滿足條件的直線l存在,其方程為,即拋物線的通徑所在的直線.解法2:(Ⅰ)前同解法1,再由弦長公式得=又由點到直線的距離公式得.從而,(Ⅱ)假設滿足條件的直線t存在,其方程為y=a,則以AC為直徑的圓的方程為將直線方程y=a代入得設直線l與以AC為直徑的圓的交點為P(x2,y2),Q(x4,y4),則有令為定值,故滿足條件的直線l存在,其方程為.即拋物線的通徑所在的直線。題型八:角度問題 例題(08重慶理)如圖(21)圖,M(2,0)和N(2,0)是平面上的兩點,動點P滿足:(Ⅰ)求點P的軌跡方程;(Ⅱ)若,求點P的坐標.解:(Ⅰ)由橢圓的定義,點P的軌跡是以M、N為焦點,長軸長2a=6的橢圓. 因此半焦距c=2,長半軸a=3,從而短半軸b=, 所以橢圓的方程為 (Ⅱ)由得 ① 因為不為橢圓長軸頂點,故P、M、△PMN中, ② 將①代入②,得 故點P在以M、N為焦點,實軸長為的雙曲線上. 由(Ⅰ)知,點P的坐標又滿足,所以 由方程組 解得 即P點坐標為問題九:四點共線問題例題(08安徽理)設橢圓過點,且著焦點為(Ⅰ)求橢圓的方程;(Ⅱ)當過點的動直線與橢圓相交與兩不同點時,在線段上取點,滿足,證明:點總在某定直線上22解 (1)由題意: ,解得,所求橢圓方程為 (2)方法一 設點Q、A、B的坐標分別為。由題設知均不為零,記,則且又A,P,B,Q四點共線,從而于是 , , 從而 ,(1) ,(2)又點A、B在橢圓C上,即 (1)+(2)2并結合(3),(4)得即點總在定直線上例題已知直線相交于A、B兩點。 (1)若橢圓的離心率為,焦距為2,求線段AB的長; (2)若向量互相垂直(其中O為坐標原點),當橢圓的離心率時,求橢圓的長軸長的最大值。(07四川理)設、分別是橢圓的左、右焦點。(Ⅰ)若是該橢圓上的一個動點,求的最大值和最小值;(Ⅱ)設過定點的直線與橢圓交于不同的兩點、且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍。解:(Ⅰ)解法一:易知所以,設,則因為,故當,即點為橢圓短軸端點時,有最小值當,即點為橢圓長軸端點時,有最大值解法二設橢圓E: (a,b0)過M(2,) ,N(,1)兩點,O為坐標原點,(I)求橢圓E的方程;(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。解:(1)因為橢圓E: (a,b0)過M(2,) ,N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為, 所以, ①當時因為所以,所以, 所以當且僅當時取”=”.② 當時,. ③ 當AB的斜率不存在時, 兩個交點為或,所以此時,綜上, |AB |的取值范圍為即: 已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方
點擊復制文檔內容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1