【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)最大值與最小值課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當(dāng)x1時(shí),f′(x)0,x1時(shí)
2024-12-04 18:01
【總結(jié)】最大值、最小值問題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-05 06:35
【總結(jié)】(1)基本不等式(2)基本不等式的最大值與最小值對(duì)于任意實(shí)數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立22x+y≥xy2如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.a+b≥ab2,,
2025-07-25 16:08
【總結(jié)】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問題的能力.二、教學(xué)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.教學(xué)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”
2024-11-19 19:27
【總結(jié)】導(dǎo)數(shù)應(yīng)用第四章§2導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用最大值、最小值問題第2課時(shí)生活中的優(yōu)化問題舉例第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)能利用導(dǎo)數(shù)知識(shí)解決實(shí)際生活中的利潤最大、效率最高、用料最省等最優(yōu)化問題.,我們經(jīng)常遇到面積、體積最大,周長最小,利
2024-11-17 08:43
【總結(jié)】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁退出本節(jié)知識(shí)引入本節(jié)目的與要求本節(jié)重點(diǎn)
2025-08-01 17:50
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章2第2課時(shí)最大值、最小值問題課時(shí)作業(yè)北師大版選修2-2一、選擇題1.函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為()A.239B.229C.329D.38[答案]A[解析]f(x)=x-x3,f′(
2024-12-05 06:27
【總結(jié)】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最小)值;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點(diǎn):掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點(diǎn):提高“用導(dǎo)數(shù)求函數(shù)的極值及
2024-12-08 01:48
【總結(jié)】導(dǎo)數(shù)應(yīng)用第四章§2導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用最大值、最小值問題第1課時(shí)函數(shù)的最大值與最小值第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會(huì)用導(dǎo)數(shù)求某定義域上函數(shù)的最值.f(x)的最大值為_____,最小值為
2024-11-16 23:22
【總結(jié)】第3課時(shí)函數(shù)的最大值與最小值,了解其與函數(shù)極值的區(qū)別與聯(lián)系.[a,b]上連續(xù)的函數(shù)f(x)的最大值和最小值的方法和步驟.如圖,設(shè)鐵路線AB=50km,點(diǎn)C處與B之間的距離為10km,現(xiàn)將貨物從A運(yùn)往C,已知1km鐵路費(fèi)用為2元,1km公路費(fèi)用為4元,在AB上M處修筑公
2024-11-19 23:14
【總結(jié)】最大值與最小值教學(xué)目的:⒈使學(xué)生理解函數(shù)的最大值和最小值的概念,掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最小)值必有的充分條件;⒉使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法和步驟教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法.教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-20 00:26
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問題第1課時(shí)練習(xí)北師大版選修1-1一、選擇題1.函數(shù)y=x-sinx,x∈??????π2,π的最大值是()A.π-1B.π2-1C.πD.π+1[答案]C[解析]f′(x)=1-cosx≥0,
2024-11-28 19:11
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問題第2課時(shí)練習(xí)北師大版選修1-1一、選擇題1.將數(shù)8拆分為兩個(gè)非負(fù)數(shù)之和,使其立方之和為最小,則分法為()A.2和6B.4和4C.3和5D.以上都不對(duì)[答案]B[解析]設(shè)一個(gè)數(shù)為x,則另一個(gè)數(shù)為8-x,則y=x3
2024-11-28 14:03
【總結(jié)】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)。如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個(gè)極小值。記作y極小值=f(x0),x0是極小值點(diǎn)。極大
2024-11-18 08:47
【總結(jié)】數(shù)學(xué)競賽輔導(dǎo)系列專題(一)利用軸對(duì)稱變換求最小值在初中數(shù)學(xué)競賽中的應(yīng)用舉例新課改下的數(shù)學(xué)教學(xué)要求教師“要?jiǎng)?chuàng)造性地使用教材,積極開發(fā)、利用各種教育資源為學(xué)生提供豐富多彩的學(xué)習(xí)素材;關(guān)注學(xué)生的個(gè)性差異,有效地實(shí)施差異教學(xué),使每個(gè)學(xué)生都得到發(fā)展”?!皩?duì)于學(xué)有余力并對(duì)數(shù)學(xué)有濃厚興趣的學(xué)生,教師要為他們提供足夠的材料,指導(dǎo)他們閱讀,發(fā)展他們的數(shù)學(xué)才能?!笨v觀近幾年的全國各級(jí)數(shù)學(xué)競賽,首先是緊扣教材
2025-01-14 19:53