【總結(jié)】1專題:對稱問題活動一:幾個常見對稱一、點關(guān)于點對稱例1.已知點A(5,8),B(4,1),試求A點關(guān)于B點的對稱點C的坐標。二、直線關(guān)于點對稱例l1:3x-y-4=0關(guān)于點P(2,-1)對稱的直線l2的方程。三、點關(guān)于直線對
2025-01-10 04:40
【總結(jié)】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應項系數(shù)應相等。3、
2025-04-17 12:52
【總結(jié)】圓錐曲線專題——定點、定值問題定點問題是常見的出題形式,化解這類問題的關(guān)鍵就是引進變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過定點問題通法,是設出直線方程,通過韋達定理和已知條件找出k和m的一次函數(shù)關(guān)系式,代入直線方程即可。技巧在于:設哪一條直線?如何轉(zhuǎn)化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質(zhì),這些性質(zhì)往往成為出題老師
2025-08-05 05:10
【總結(jié)】張啟津張華同學家中有三種酒杯,一種酒杯的軸截面是等腰直角三角形,稱之為直角酒杯(如圖1),另一種酒杯的軸截面近似一條拋物線,杯口寬cm,杯深8cm(如圖2),稱之為拋物線酒杯,還有一種軸截面近似橢圓的橢圓酒杯,測量后得知杯口寬4cm,杯深為9cm,中間最寬處距杯底為5cm(如圖3)。42圖(1)圖(2)
2025-08-16 01:31
【總結(jié)】.,....課題名稱:《圓錐曲線中的定點與定值問題》教學內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點、定值問題與運動變化密切相關(guān),這類問題常與函數(shù),不等式,向量等其他章節(jié)知識綜合
2025-03-25 00:03
【總結(jié)】橢圓中的定點定值問題1.已知橢圓C:()的右焦點為F(1,0),且(,)在橢圓C上。(1)求橢圓的標準方程;(2)已知動直線l過點F,且與橢圓C交于A、B兩點,試問x軸上是否存在定點Q,使得恒成立?若存在,求出點Q的坐標;若不存在,請說明理由。解:(1)由題意知c=1.由橢圓定義得,即--3分∴,橢圓C方程為.(2)假設在x軸上存在點Q(m,0),使得恒成立。
2025-03-25 04:50
【總結(jié)】主講人對外經(jīng)貿(mào)大學附中沈海英立體幾何中的定值問題第一課:立體幾何中定值問題概述王秀彩特級教師工作室高中的立體幾何教學中,立體幾何圖形在變化過程中,其中某些幾何元素的幾何量保持不變,或幾何元素間的某些幾何性質(zhì)或位置關(guān)系不變,這些圖形變化中的不變因素我們稱之為定值,與之相關(guān)的問題稱為定值問題.定
2024-11-24 14:09
【總結(jié)】........專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學2018屆高三上學期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標.【答案
【總結(jié)】理論與實驗課教案首頁第13次課授課時間2016年12月9日第1~2節(jié)課教案完成時間2016年12月2日課程名稱高等數(shù)學教員職稱副教授專業(yè)層次藥學四年制本科年級2016授課方式理論學時2授課題目(章,節(jié))第六章空間解析幾何§§基本教材、主要參考書和相關(guān)網(wǎng)站基本教材
2025-07-23 13:45
【總結(jié)】精品資源解析幾何中的不等式產(chǎn)生方案解析幾何中有一類題,需要依據(jù)題目特點建立不等式,然后才能求解,不等式的產(chǎn)生方法有一定的技術(shù)性,最常見的有下列幾種:一、結(jié)合定義、圓錐曲線的光學性質(zhì),利用圖形中幾何量之間的大小關(guān)系(如三角形兩邊之差(和)不大(小)于第三邊)產(chǎn)生不等式.圖1PF2F1yxONM例1:中心在原點,焦
2025-05-04 18:26
2025-03-24 05:51
【總結(jié)】平面解析幾何中的中心對稱和軸對稱龍碧霞一、中心對稱定義:把一個圖形繞某個點旋轉(zhuǎn)180后能與另一個圖形重合。這兩個圖形關(guān)于這個點對稱。這個點叫著對稱中心。性質(zhì):關(guān)于某個點成中心對稱的兩個圖形。對稱點的連線都經(jīng)過對稱中心。且被對稱中心平分。一般有三種情況。(1)點關(guān)于點對稱。點P(x,y)關(guān)于點M(a,b)對稱的點Q的坐標是Q(2a-x,2b-y)。(由中點坐標
2025-07-18 03:35
【總結(jié)】專題:數(shù)列與解析幾何綜合——點列問1.如圖,,過點P1作x軸的垂線交直線l2于點Q1,過點Q1作y軸的垂線交直線l1于點P2,過點P2作x軸的垂線交直線l2于點Q2,…,這樣一直作下去,可得到一系列點P1、Q1、P2、Q2,…,點Pn(n=1,2,…)的橫坐標構(gòu)成數(shù)列(Ⅰ)證明;(Ⅱ)求數(shù)列的通項公式;(Ⅲ)比較的大小.【解析】(Ⅰ)證明:設點Pn的
2025-07-23 16:03
【總結(jié)】專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學2018屆高三上學期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標.【答案】(1)(2)【解析】試題分析:(Ⅰ)設圓過橢圓的上、下、右三個頂點,可求得,再根據(jù)橢圓的離心率求得,可得橢圓的方程;(Ⅱ)設直線的方程為,
2025-04-17 12:43
【總結(jié)】淺談解析幾何中的“點差法”高二(七班)第一學習小組易正貴整理2022年5月解析幾何在高考中占有重要地位,一般放在試題倒數(shù)第二題,有時也成為壓軸題。在高考中,絕大多數(shù)學生只能完成第1問,第2問,因計算量大而難無法完成。在平時學習及復習過程中,要讓自己真正理解解析幾何中的最優(yōu)解法與算法,這樣在考試中才能作出正確的、最優(yōu)的解法選擇,這樣
2025-01-08 21:36