【總結(jié)】毛壩中學(xué)導(dǎo)學(xué)案學(xué)科:自主學(xué)習(xí)乃學(xué)習(xí)之本。九年級1-4班第組學(xué)生姓名組評:編寫時(shí)間:年月日授課時(shí)間:年月日共
2025-11-12 00:04
【總結(jié)】1、教學(xué)內(nèi)容中心對稱2、教材分析3、學(xué)情分析學(xué)生在學(xué)習(xí)了旋轉(zhuǎn)的基礎(chǔ)上學(xué)習(xí)中心對稱,在作圖方面已經(jīng)有了一定的基礎(chǔ),中心對稱是一種特殊的旋轉(zhuǎn),對于性質(zhì)的得出難度不大。4、教學(xué)目標(biāo)⑴.知識技能 ①了解中心對稱、對稱中心、關(guān)于中心的對稱點(diǎn)等概念及掌握這些概念解決一些問題②通過具體實(shí)例認(rèn)識兩個(gè)圖形關(guān)于某一點(diǎn)中心對稱的本質(zhì):就是一個(gè)圖形繞一點(diǎn)旋轉(zhuǎn)
2025-04-16 12:22
2025-11-12 01:22
【總結(jié)】用平移、旋轉(zhuǎn)和軸對稱研究幾何問題學(xué)習(xí)旋轉(zhuǎn)要解決的問題:分三個(gè)層次①直接的旋轉(zhuǎn)作圖或者旋轉(zhuǎn)關(guān)系的敘述;②增加干擾線段,隱含部分已知,主動(dòng)發(fā)現(xiàn)旋轉(zhuǎn)關(guān)系,并證明某些結(jié)論③需要添加輔助線,完善圖形創(chuàng)造情境,進(jìn)行證明。要重視的問題:共頂點(diǎn)的等腰三角形的出現(xiàn)是實(shí)現(xiàn)旋轉(zhuǎn)的情境;(輔助線添加方向)一、平移、旋轉(zhuǎn)和軸對稱在幾何題中的應(yīng)用1.已知:△ABC與△:BD⊥EC.2
2025-03-25 06:05
【總結(jié)】23.2.2中心對稱圖形,,,(2)圓,(4)正方形,(1)線段,(3)平行四邊形,,A,B,觀察,將下面的圖形繞O點(diǎn)旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?,O,,,,,O,如果一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180°后,...
2025-11-08 00:12
【總結(jié)】§中心對稱認(rèn)真觀察,冷靜判斷(1)(2)軸對稱復(fù)習(xí):??把一個(gè)圖形沿著某一條直線折疊能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖形關(guān)于這條直線對稱或軸對稱..的垂直平分線.認(rèn)真觀察,冷靜判斷(1)(2)(1)把其中一個(gè)圖案
2025-08-23 14:17
【總結(jié)】中心對稱圖形義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級上冊一教材的地位與作用這一節(jié)課與圖形的三種運(yùn)動(dòng)(平移、翻折、旋轉(zhuǎn))之一的“旋轉(zhuǎn)”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生認(rèn)識圖形的三種基本運(yùn)動(dòng)中“旋轉(zhuǎn)”在幾何知識中的重要體現(xiàn),同時(shí)也完善了初中部分對“對稱圖形”(軸對稱圖形、中心對稱圖形)的知識講授,
2025-07-18 07:20
【總結(jié)】第2課時(shí)中心對稱與中心對稱圖形滬科版九年級下冊狀元成才路新課導(dǎo)入問題1:把圖中三角形繞定點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ABCO180°狀元成才路問題2:如圖,線段AC、BD相交于點(diǎn)O,OA=OC,
2025-03-12 21:17
【總結(jié)】中心對稱圖形(1)觀察下列圖形看看它們有沒有共同的特征?(2)你能將下圖中的“風(fēng)車”繞其上的一點(diǎn)旋轉(zhuǎn)180度,使旋轉(zhuǎn)前后的圖形完全重合嗎?正六邊形呢?A上圖繞中心旋轉(zhuǎn)180度與原圖重合中心對稱圖形的定義?在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形相互重合,那么這個(gè)圖形叫做中心對稱圖形。這個(gè)點(diǎn)叫做
2025-07-23 03:41
【總結(jié)】中心對稱(第1課時(shí))九年級上冊1、回憶什么是軸對稱?成軸對稱的兩個(gè)圖形有什么性質(zhì)??如果一個(gè)圖形沿著對折后能與?重合,則稱這兩個(gè)圖形關(guān)于這條直線對稱或軸對稱。?成軸對稱的圖形,它們的對應(yīng)點(diǎn)的連線被對稱軸
2025-11-21 14:19
【總結(jié)】第一篇: 一、教學(xué)內(nèi)容 中心對稱 二、教材分析 三、學(xué)情分析 學(xué)生在學(xué)習(xí)了旋轉(zhuǎn)的基礎(chǔ)上學(xué)習(xí)中心對稱,在作圖方面已經(jīng)有了一定的基礎(chǔ),中心對稱是一種特殊的旋轉(zhuǎn),對于性質(zhì)的得出難度不大。 四...
2025-10-30 18:40
【總結(jié)】中心對稱韶關(guān)市第十三中學(xué)吳靜CB(2)(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?觀察、思考:(2)線段AC,BD相交于點(diǎn)O,OA=OC,OB=OD.把△OCD繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?O重合重合把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)
2025-11-28 17:27
【總結(jié)】平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180o,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)在叫做它的對稱中心。中心對稱圖形性質(zhì):對稱中心是對應(yīng)點(diǎn)連線的中點(diǎn)想一想下面哪些圖形是中心對稱圖形?o(2)圓(1)正三角形(4)等腰梯形(3)平行四邊形(1)正三角形(
2025-11-01 05:31
【總結(jié)】安義縣中小學(xué)自主學(xué)習(xí)提綱年級:九年級學(xué)科:數(shù)學(xué)學(xué)期:上學(xué)期設(shè)計(jì)時(shí)間:2020年月日NO課題課型(課時(shí))新授(第2課時(shí))策劃者劉名鋼審核者導(dǎo)學(xué)者學(xué)習(xí)時(shí)間學(xué)習(xí)者班級九年級學(xué)習(xí)目標(biāo),建立中心對稱圖形的概念,會(huì)判斷一個(gè)圖形是不是中心對稱圖形。
2025-11-09 23:13
【總結(jié)】安義縣中小學(xué)自主學(xué)習(xí)提綱年級:九年級學(xué)科:數(shù)學(xué)學(xué)期:上學(xué)期設(shè)計(jì)時(shí)間:2020年月日NO課題中心對稱課型(課時(shí))新授(第1課時(shí))策劃者劉名鋼審核者導(dǎo)學(xué)者學(xué)習(xí)時(shí)間學(xué)習(xí)者班級九年級學(xué)習(xí)目標(biāo)(或中心對稱)的本質(zhì);就是一個(gè)圖形繞
2025-11-10 00:43