【總結(jié)】相關(guān)知識(shí)點(diǎn):含義含有可變參數(shù)的曲線系所經(jīng)過(guò)的點(diǎn)中不隨參數(shù)變化的某個(gè)點(diǎn)或某幾個(gè)點(diǎn)定點(diǎn)解法把曲線系方程按照參數(shù)進(jìn)行集項(xiàng),使得方程對(duì)任意參數(shù)恒成立的方程組的解即為曲線系恒過(guò)的定點(diǎn)含義不隨其他量的變化而發(fā)生數(shù)值變化的量定值解法建立這個(gè)量關(guān)于其他量的關(guān)系式,最后的結(jié)果與其他變化的量無(wú)關(guān)定點(diǎn)問(wèn)
2025-08-05 03:30
【總結(jié)】.,....課題名稱:《圓錐曲線中的定點(diǎn)與定值問(wèn)題》教學(xué)內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識(shí)交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點(diǎn)、定值問(wèn)題與運(yùn)動(dòng)變化密切相關(guān),這類問(wèn)題常與函數(shù),不等式,向量等其他章節(jié)知識(shí)綜合
2025-03-25 00:03
【總結(jié)】........專題08解鎖圓錐曲線中的定點(diǎn)與定值問(wèn)題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案
2025-04-17 12:52
【總結(jié)】完美WORD格式專題08解鎖圓錐曲線中的定點(diǎn)與定值問(wèn)題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案】(1)(2)【解析】試題分析:(Ⅰ)設(shè)圓過(guò)橢圓的上、下、
2025-08-05 19:26
【總結(jié)】WORD資料可編輯高三數(shù)學(xué)專題復(fù)習(xí)圓錐曲線中的最值問(wèn)題和范圍的求解策略最值問(wèn)題是圓錐曲線中的典型問(wèn)題,它是教學(xué)的重點(diǎn)也是歷年高考的熱點(diǎn)。解決這類問(wèn)題不僅要緊緊把握?qǐng)A錐曲線的定義,而且要善于綜合應(yīng)用代數(shù)、平幾、三角等相關(guān)知識(shí)。以下從五個(gè)方面予以闡述。一.求距離的最
2025-03-24 05:53
【總結(jié)】專題08解鎖圓錐曲線中的定點(diǎn)與定值問(wèn)題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案】(1)(2)【解析】試題分析:(Ⅰ)設(shè)圓過(guò)橢圓的上、下、右三個(gè)頂點(diǎn),可求得,再根據(jù)橢圓的離心率求得,可得橢圓的方程;(Ⅱ)設(shè)直線的方程為,
2025-04-17 12:43
【總結(jié)】破解橢圓中最值問(wèn)題的常見(jiàn)策略浬浦中學(xué)蔡明有關(guān)圓錐曲線的最值問(wèn)題,在近幾年的高考試卷中頻頻出現(xiàn),在各種題型中均有考查,其中以解答題為重,在平時(shí)的高考復(fù)習(xí)需有所重視。圓錐曲線最值問(wèn)題具有綜合性強(qiáng)、涉及知識(shí)面廣而且常含有變量的一類難題,也是教學(xué)中的一個(gè)難點(diǎn)。要解決這類問(wèn)題往往利用函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸等數(shù)學(xué)思想方
2025-08-26 13:09
【總結(jié)】圓中的最值問(wèn)題【考題展示】題1(2012年武漢中考)在坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B為y軸正半軸上的一點(diǎn),點(diǎn)C是第一象限內(nèi)一點(diǎn),且AC=2.設(shè)tan∠BOC=m,則m的取值范圍是_________.題2(2013年武漢元調(diào))如圖,在邊長(zhǎng)為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長(zhǎng)為半徑作⊙O,C為半圓弧上的一個(gè)動(dòng)點(diǎn)(不與A、B兩點(diǎn)重合),射線AC交
2025-03-25 00:00
【總結(jié)】徐州市沛縣第二中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案編寫人:劉洪金審核:高三數(shù)學(xué)備課組---------------------------------------------------------------------------------------------------------------------------------------------------解
2025-03-25 07:47
【總結(jié)】專題30圓錐曲線中的最值問(wèn)題【考情分析】與圓錐曲線有關(guān)的最值和范圍問(wèn)題,因其考查的知識(shí)容量大、分析能力要求高、區(qū)分度高而成為高考命題者青睞的一個(gè)熱點(diǎn)。江蘇高考試題結(jié)構(gòu)平穩(wěn),題量均勻.每份試卷解析幾何基本上是1道小題和1道大題,平均分值19分,實(shí)際情況與理論權(quán)重基本吻合;涉及知識(shí)點(diǎn)廣.雖然解析幾何的題量不多,分值僅占總分的13%,但涉及到的知識(shí)點(diǎn)分布較廣,覆蓋面較大;注重與其他
2025-03-25 01:53
【總結(jié)】高考專題圓錐曲線中的最值和范圍問(wèn)題★★★高考要考什么1 圓錐曲線的最值與范圍問(wèn)題(1)圓錐曲線上本身存在的最值問(wèn)題:①橢圓上兩點(diǎn)間最大距離為2a(長(zhǎng)軸長(zhǎng)).②雙曲線上不同支的兩點(diǎn)間最小距離為2a(實(shí)軸長(zhǎng)).③橢圓焦半徑的取值范圍為[a-c,a+c],a-c與a+c分別表示橢圓焦點(diǎn)到橢圓上的點(diǎn)的最小距離與最大距離.④拋物線上的點(diǎn)中頂點(diǎn)與拋物線的準(zhǔn)線距離最近.
2025-08-05 19:25
【總結(jié)】......定點(diǎn)、定直線、定值專題1、已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂
【總結(jié)】界首一中王超對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練
2025-08-05 10:59
【總結(jié)】專題 最值問(wèn)題【考點(diǎn)聚焦】考點(diǎn)1:向量的概念、向量的加法和減法、向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積.考點(diǎn)2:解斜三角形.考點(diǎn)3:線段的定比分點(diǎn)、平移.考點(diǎn)4:向量在平面解析幾何、三角、復(fù)數(shù)中的運(yùn)用.考點(diǎn)5:向量在物理學(xué)中的運(yùn)用.【自我檢測(cè)】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導(dǎo)數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類重要函數(shù)
2025-08-04 10:11
【總結(jié)】麻城市第一中學(xué)圓錐曲線中的定點(diǎn)問(wèn)題麻城一中王輝麻城市第一中學(xué)1.解析幾何中,定點(diǎn)問(wèn)題是高考命題的一個(gè)熱點(diǎn),也是一個(gè)難點(diǎn),因?yàn)槎c(diǎn)必然是在變化中所表現(xiàn)出來(lái)的不變量,所以可運(yùn)用函數(shù)的思想方法,結(jié)合等式的恒成立求解,也就是說(shuō)要與題中的可變量無(wú)關(guān)。2.求定點(diǎn)常用方法有兩種:①特殊到一般法,根據(jù)動(dòng)點(diǎn)、
2025-08-05 04:47