【總結(jié)】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
2025-03-24 07:41
【總結(jié)】全等三角形中輔助線的添加:全等三角形的常見輔助線的添加方法、基本圖形的性質(zhì)的掌握及熟練應(yīng)用。二.知識要點(diǎn):1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點(diǎn)……作……∥……;(3)作垂線(作高):過點(diǎn)……作……⊥……,垂足為……;(4)作中線:取……中點(diǎn)……,連接……;(5)延長并截取線段:延長……使……等于……;(6)截取等長線段
2025-06-19 22:20
【總結(jié)】幾何證明-常用輔助線(一)中線倍長法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-06-25 21:39
【總結(jié)】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)
2025-03-24 07:38
【總結(jié)】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法“周長問題”的轉(zhuǎn)化Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形適用情況:圖中已經(jīng)存在兩個點(diǎn)—X和Y語言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線
2024-08-10 16:44
【總結(jié)】全等三角形問題中常見的輔助線——截長補(bǔ)短法例1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC例2、如圖,AD∥BC,AE,BE分別平分∠DAB,∠CBA,CD過點(diǎn)E,求證;AB=AD+BC例3、如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP
【總結(jié)】全等三角形問題中常見的輔助線的作法(含答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-03-24 07:40
【總結(jié)】.,....南京書立行教育數(shù)學(xué)課教案課題輔助線的作法1——截長補(bǔ)短組名教師徐老師時間2018班級一對多年級初二課型復(fù)習(xí)課教學(xué)目標(biāo)掌握全等三角形的判定方法:SAS、
2025-04-07 05:01
【總結(jié)】三角形中的常用輔助線課程解讀一、學(xué)習(xí)目標(biāo):歸納、掌握三角形中的常見輔助線?二、重點(diǎn)、難點(diǎn):1、全等三角形的常見輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實(shí)際問題的能力。?????三、考點(diǎn)分析:全等三角形是初中數(shù)學(xué)中的重要內(nèi)容之一,是今后學(xué)習(xí)其他知識的基礎(chǔ)。判斷三角形全等的公理
2025-04-16 23:10
【總結(jié)】全等三角形問題中常見的輔助線——倍長中線法△ABC中,AD是BC邊中線方式1:直接倍長,(圖1):延長AD到E,使DE=AD,連接BE方式2:間接倍長1)(圖2)作CF⊥AD于F,作BE⊥AD的延長線于E,連接BE2)(圖3)延長MD到N,使DN=MD,連接CD【經(jīng)典例題】例1已知,如圖△ABC中,AB=5,AC=3,則中線
2025-06-19 20:37
【總結(jié)】全等三角形輔助線系列之三與截長補(bǔ)短有關(guān)的輔助線作法大全一、截長補(bǔ)短法構(gòu)造全等三角形截長補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長”,就是將三者中最長的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補(bǔ)短”,就是將一個已知的較短的線段延長至與另一個已知的較短的長度相等
2025-07-24 05:40
【總結(jié)】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關(guān)鍵,如何準(zhǔn)確地作出需要的輔助線,簡單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點(diǎn),F(xiàn)是BE延長線與AC的交點(diǎn),求證:AF=分析:題設(shè)中含有D是BC中點(diǎn),E是AD中點(diǎn),由此可以聯(lián)想到三角形中與邊中點(diǎn)有密切聯(lián)
2025-06-18 13:03
【總結(jié)】全等三角形輔助線系列之一與角平分線有關(guān)的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等.對于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等:過角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來證明問題;2、截取構(gòu)全等利用對稱性,在角的兩邊截取相等的線段,
【總結(jié)】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”
2025-03-26 04:26