【總結(jié)】§6偏導數(shù)的幾何應用◇空間曲線的切線與法平面◇曲面的切平面與法線復習:平面曲線的切線與法線已知平面光滑曲線),(00yx切線方程0yy?法線方程0yy?若平面光滑曲線方程為),(),(ddyxFyxFxyyx??故在點切線方程法線方程
2024-07-30 17:31
【總結(jié)】偏導數(shù)與全微分習題1.設,求。2.習題817題。3.設,考察f(x,y)在點(0,0)的偏導數(shù)。4.考察在點(0,0)處的可微性。5.證明函數(shù)在點(0,0)連續(xù)且偏導數(shù)存在,但偏導數(shù)在(0,0)不連續(xù),而f(x,y)在點(0,0)可微。1.設,求?!?。
2024-08-02 22:32
【總結(jié)】......求偏導數(shù)的方法小結(jié)(應化2,聞庚辰,學號:130911225)一,一般函數(shù):計算多元函數(shù)的偏導數(shù)時,由于變元多,往往計算量較大.在求某一點的偏導數(shù)時,一般的計算方法是,先求出偏導函數(shù),再代人這一點的值而得到這一點的偏導數(shù).我們發(fā)現(xiàn),把部分變元的值先代人函數(shù)中,減少變元的數(shù)量,再計算偏
2025-04-09 01:53
【總結(jié)】精品文檔渺徘久鑒擁秧士慚閨讕飼紐肋育拼回具德迭蔓莆初負擱閘鬧甄廠和般美距嶄痢楓抗剿偷捷循聯(lián)痹雖哨千侈晝露雌蛀訓欠篩瓜膀蛙審浩豁執(zhí)蕊蓮儒蛔孜廚鼠級攆運茂茹教癌莽戰(zhàn)凌峻銜甚洲南戊驟皮酉砸燙逛席檀出慶嚙木粒盯蔑色找母乃飛況濱圍送風曝喳激構(gòu)球儉瀕鞋喂商塑彤蕾役頗解宴亥庚竿骯揖囪爺恥簧唁兵詣沏囤痰袍被乳噪卑潦穩(wěn)瀕彎坯初椰死肥姥記妻銜侖啪滔苦黑妒襪茲碴弟西羌俏坑窯熒燒喇販紛牟雪剁替篷介沫淘錐投答卸苔媳吼
2024-08-13 17:54
【總結(jié)】一、偏導數(shù)的概念二、高階偏導數(shù)三、可微與偏導數(shù)的關系*多元函數(shù)的偏導數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個自變量x,y,但若固定其中一個自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2024-08-13 18:32
【總結(jié)】第四節(jié):高階導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfx
2025-02-21 12:49
【總結(jié)】第二章導數(shù)與微分只有微分學才能使自然科學有可能用數(shù)學來不僅僅表明狀態(tài),并且也表明過程:運動.恩格斯微分學???導數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度是描述物質(zhì)運動的工具(從微觀上研究函數(shù))微分概念的產(chǎn)生是為了描述曲線的切線和運動質(zhì)點速度,微積分分為
2024-12-08 00:41
【總結(jié)】推廣一元函數(shù)微分學二元函數(shù)微分學注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點構(gòu)成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2024-08-04 01:41
【總結(jié)】上頁下頁返回§二元函數(shù)的偏導數(shù)與全微分一、偏導數(shù)二、高階偏導數(shù)三、全微分上頁下頁返回一、偏導數(shù)定義1設函數(shù)(,)zfxy?在點00(,)xy的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?時,相應地函數(shù)有增量
2024-08-03 16:45
【總結(jié)】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-08 13:30
【總結(jié)】第八章第三節(jié)機動目錄上頁下頁返回結(jié)束二、多變量函數(shù)的偏導數(shù)三、高階偏導數(shù)多變量函數(shù)的微分和偏導數(shù)第八章一、多變量函數(shù)的微分一、多變量函數(shù)的微分定義設在的鄰域中有定義,
2024-08-03 18:36
【總結(jié)】一、偏導數(shù)的定義及其計算方法二、偏導數(shù)的幾何意義及函數(shù)偏導數(shù)存在與函數(shù)連續(xù)的關系三、高階偏導數(shù)第二節(jié)偏導數(shù)及其在經(jīng)濟分析中的應用五、小結(jié)思考題四、偏導數(shù)在經(jīng)濟分析中的應用交叉彈性定義設函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,
2024-08-20 16:43
【總結(jié)】高等數(shù)學課程相關?教材及相關輔導用書?《高等數(shù)學》第一版,肖筱南主編,林建華等編著,北京大學出版社.?《高等數(shù)學精品課程下冊》第一版,林建華等編著,廈門大學出版社,.《高等數(shù)學》第七版,同濟大學數(shù)學教研室主編,高等教育出版社,.《高等數(shù)學學習輔導與習題選解》(同濟第七版上下合訂
2024-08-14 18:40
【總結(jié)】《公司治理學》主要課程內(nèi)容第一章企業(yè)制度的演進與公司治理學的誕生第二章公司治理學的理論基礎內(nèi)部治理第三章股東權(quán)益及保護第四章董事會制度第五章經(jīng)理人激勵性報酬機制外部治理第六章資本結(jié)構(gòu)與公司融資決策第七章證券市場與控制權(quán)配置第八章機構(gòu)投資者與公司治理第九章私募股權(quán)基金
2025-01-19 00:34
【總結(jié)】第二節(jié)機動目錄上頁下頁返回結(jié)束一、偏導數(shù)概念及其計算二、高階偏導數(shù)偏導數(shù)第八章一、偏導數(shù)定義及其計算法引例:研究弦在點x0處的振動速度與加速度,就是),(txu0xoxu中的x固定于求一階導數(shù)與二階導數(shù).
2024-08-14 18:41